A. E. Brouwer, H. O. Hämäläinen, P. R. J. Östergård & N. J. A. Sloane,(quoted as [BHÖS]) bounds on the size of mixed binary/ternary codes were given.
Bounds on Mixed Binary/Ternary Codes,
IEEE Trans. Inf. Th. 44 (1998) 140-161
N(m,n,d) is defined as the maximum number of vectors of length m+n with m binary and n ternary coordinates and mutual distance at least d. If n=0 or m=0, this is about binary or ternary codes, and discussed elsewhere. The case m > 0, n > 0 is the truly mixed case discussed here. The cases d ≤ 2 or d ≥ m+n−1 are easy and have been settled completely. Here we copy the tables from the reference above and add some modern improvements.
The covering problem is interesting if one wants to be sure to get a prize. The packing problem, if one does not want to waste money by covering the same possibility twice. The function N(m,n,d) answers the packing problem (with d = 2e+1).
Since our football pools have 13 matches, that explains the restriction to m+n ≤ 13 in the tables in [BHÖS]. However, the spanish Quiniela has 14+1 matches, so there is interest in extending these tables to m+n ≤ 14.
This wrong construction was used to show that N(13,2,6) ≥ 134, N(12,2,6) ≥ 68, N(12,1,5) ≥ 68, N(11,2,6) ≥ 38, N(11,1,5) ≥ 38, so that these five values are now in doubt. We can use N(12,1,5) ≥ N(13,0,5) = 64, N(11,1,5) ≥ N(12,0,5) = 32, N(10,3,6) ≥ N(11,2,6) ≥ N(12,1,6) = 32 instead. These smaller lower bounds are given in blue. Some of them were again improved later.
A large number of improved upper bounds was given in
Bart Litjens,These upper bounds are not quoted separately, but are given in the tables in purple.
Semidefinite bounds for mixed binary/ternary codes,
Discr. Math. 341 (2018) 1740-1748. arXiv:1606.06930
No reference is given for upper bounds that are a consequence of N(m+1,n,d) ≤ 2N(m,n,d) or N(m,n+1,d) ≤ 3N(m,n,d).
m\n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|---|
0 | 1 | 1 | 1 | 3 | 9 | 18 | 38 | 99-111 |
1 | 1 | 1 | 2 | 6 | 12 | 33 | 71-74 | 198-222 |
2 | 1 | 2 | 4 | 9 | 22 | 52-54 | 134-148 | 396-444 |
3 | 2 | 3 | 6 | 18 | 42 | 100-108 | 266-296 | 711-888 |
4 | 2 | 6 | 12 | 28 | 72 | 186-216 | 504-592 | 1422-1749 |
5 | 4 | 8 | 22 | 54 | 144 | 348-432 | 1008-1184 | 2592-3259 |
6 | 8 | 16 | 38 | 108 | 288 | 672-855 | 1896-2332 | 5184-6362 |
7 | 16 | 26 | 72 | 192-216 | 576 | 1296-1612 | 3792-4443 | 10368-12171 |
8 | 20 | 50 | 144 | 384-414 | 1152 | 2560-3087 | 6912-8331 | |
9 | 40 | 96-100 | 288 | 768-796 | 1728-2130 | 4608-5924 | ||
10 | 72 | 192-200 | 512-552 | 1152-1492 | 3280-4081 | |||
11 | 144 | 384 | 864-1049 | 2304-2890 | ||||
12 | 256 | 768 | 1536-2011 | |||||
13 | 512 | 1120-1360 | ||||||
14 | 1024 |
m\n | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|
0 | 252-333 | 729-937 | 2187-2808 | 6561-7029 | 19683 | 59049 | 118098-153527 |
1 | 486-666 | 1458-1874 | 4374-4920 | 13122-14058 | 39366 | 78732-106288 | |
2 | 972-1284 | 2916-3514 | 8748-9840 | 26244-26790 | 59049-75920 | ||
3 | 1944-2464 | 5832-6846 | 17496-18589 | 40095-52488 | |||
4 | 3888-4764 | 11664-12887 | 34992-36337 | ||||
5 | 7776-9128 | 23328-25194 | |||||
6 | 15552-17485 |
The bound N(10,0,3) ≤ 72 was obtained in
P. R. J. Östergård, T. Baicheva & E. Kolev,
Optimal binary one-error-correcting codes of length 10 have 72 codewords,
IEEE Trans. Inform. Theory 45 (1999) 1229-1231.
The bounds N(7,1,3) ≤ 26, N(8,1,3) ≤ 50, N(6,2,3) ≤ 38, N(7,2,3) ≤ 72, N(4,3,3) ≤ 28, N(5,3,3) ≤ 54, N(3,4,3) ≤ 42, N(4,4,3) ≤ 72, N(2,5,3) ≤ 54, N(1,6,3) ≤ 74, N(0,6,3) ≤ 38, N(0,7,3) ≤ 111 were obtained in
P. R. J. Östergård,
Classification of binary/ternary one-error-correcting codes,
Discrete Math. 223 (2000) 253-262.
The bound N(0,10,3) ≤ 2808 is due to
W. Lang, J. Quistorff & E. Schneider,
New Results on Integer Programming for Codes,
Congr. Numer. 188 (2007) 97-107.
The bound N(3,5,3) ≥ 99 follows by explicit construction due to Pedro fdez, 2011-04-28.
The bound N(0,8,3) ≥ 252 follows by explicit construction due to ehl555, 2012-04-25.
The bound N(3,6,3) ≥ 266 follows by explicit construction due to PacoHH, 2013-01-03.
The bound N(5,5,3) ≥ 348 follows by explicit construction due to Pucho, 2011-03-03.
The bound N(11,2,3) ≥ 848 follows by explicit construction due to Código, 2011-04-10.
The bound N(5,6,3) ≥ 1008 follows by explicit construction due to Pucho, 2012-04-23.
The bound N(13,1,3) ≥ 1120 follows by explicit construction due to Código, 2011-04-07.
The bound N(4,7,3) ≥ 1422 follows by explicit construction due to PacoHH, 2010-12-08. It implies N(3,7,3) ≥ 711.
The bounds N(8,5,3) ≥ 2560 and N(10,4,3) ≥ 3280 follow by explicit construction due to Código, 2011-04-04.
The bounds N(11,3,3) ≥ 2304, N(9,5,3) ≥ 4608, N(8,6,3) ≥ 6624, N(7,7,3) ≥ 9720, N(6,8,3) ≥ 14256 were announced by PacoHH, 2010-11-30. On this page one finds a zip file with codes confirming these.
The bounds N(8,6,3) ≥ 6912, N(7,7,3) ≥ 10368, N(6,8,3) ≥ 15552, N(5,9,3) ≥ 23328, N(4,10,3) ≥ 34992, N(3,11,3) ≥ 40095 were announced by Código. All follow from the last two. No explicit construction was given.
The bounds N(3,5,3) ≥ 100 and N(11,2,3) ≥ 864, were found by anonymous, and given on this forum page (with explicit codes given in D3.zip).
m\n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|---|
0 | 1 | 1 | 1 | 1 | 3 | 6 | 18 | 33 |
1 | 1 | 1 | 1 | 2 | 4 | 12 | 33 | 66 |
2 | 1 | 1 | 2 | 3 | 8 | 22 | 51 | 114-132 |
3 | 1 | 2 | 3 | 6 | 15 | 36 | 92-96 | 216-264 |
4 | 2 | 2 | 6 | 11 | 28 | 62-64 | 158-192 | 408-528 |
5 | 2 | 4 | 8 | 20 | 50 | 114-128 | 288-384 | 762-1056 |
6 | 4 | 8 | 16 | 34 | 96 | 216-256 | 576-768 | 1512-2112 |
7 | 8 | 16 | 26 | 64-68 | 192 | 408-512 | 1152-1536 | 3024-4224 |
8 | 16 | 20 | 50 | 128-136 | 384 | 768-1024 | 2304-3027 | |
9 | 20 | 40 | 96-100 | 256-272 | 548-768 | 1536-2048 | ||
10 | 40 | 72 | 192-200 | 420-544 | 1050-1480 | |||
11 | 72 | 144 | 384 | 784-1032 | ||||
12 | 144 | 256 | 768 | |||||
13 | 256 | 512 | ||||||
14 | 512 |
m\n | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|
0 | 99 | 243-297 | 729-891 | 1458-2561 | 4374-6839 | 8559-19270 | 24786-54774 |
1 | 162-198 | 486-594 | 972-1749 | 2916-4920 | 8019-13531 | 16767-37714 | |
2 | 324-396 | 729-1188 | 1944-3371 | 5589-9450 | 16038-27356 | ||
3 | 528-792 | 1296-2376 | 3726-6581 | 10692-18039 | |||
4 | 1056-1584 | 2484-4590 | 7128-13122 | ||||
5 | 1896-3168 | 4752-9180 | |||||
6 | 3660-6336 |
We have N(8,2,4) ≤ N(8,1,3) and N(10,1,4) ≤ N(11,0,4) ≤ N(10,0,3) and N(3,6,4) ≤ (3/2)N(4,5,4).
The bounds N(6,3,4) ≤ 34, N(5,4,4) = 50, N(6,4,4) ≤ 96, N(3,5,4) = 36, N(4,5,4) ≤ 64, N(2,6,4) ≤ 51, N(3,6,4) ≤ 100, N(0,7,4) ≤ 33 are due to
P. R. J. Östergård,
On binary/ternary error-correcting codes with minimum distance 4,
in: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (M. Fossorier, H. Imai, S. Lin, and A. Poli, Eds.), LNCS 1719, Springer, Berlin 1999, pp. 472-481.
The bounds N(0,12,4) ≤ 6839 and N(0,13,4) ≤ 19270 are due to
Dion Gijswijt, Alexander Schrijver & Hajime Tanaka,
New upper bounds for nonbinary codes based on the Terwilliger algebra and semidefinite programming,
JCT (A) 113 (2006) 1719-1731.
The bound N(8,2,4) ≥ 50 follows by explicit construction due to PacoHH, 2010-12-10.
The bound N(4,5,4) ≥ 62 follows by explicit construction due to PacoHH, 2010-12-02.
The bound N(5,5,4) ≥ 114 follows by explicit construction due to Pedro fdez, 2011-03-01.
The bound N(7,5,4) ≥ 408 follows by explicit construction due to Joan, 2011-02-27.
The bound N(3,6,4) ≥ 92 follows by explicit construction due to PacoHH, 2010-12-16.
The bound N(4,6,4) ≥ 158 follows by explicit construction due to Código, 2011-04-02.
The bound N(5,6,4) ≥ 216 follows by explicit construction due to PacoHH, 2011-03-16.
The bound N(2,7,4) ≥ 114 follows by explicit construction due to PacoHH, 2011-03-16.
The bound N(4,7,4) ≥ 408 follows by explicit construction due to Código, 2011-04-02.
The bounds N(3,8,4) ≥ 528, N(4,8,4) ≥ 1056 follow by explicit construction due to spaik and Código, 2011-04-25.
The bound N(5,8,4) ≥ 1896 follows by explicit construction due to spaik, 2012-04-25.
The bound N(6,8,4) ≥ 3660 follows by explicit construction due to PacoHH, 2013-01-02.
The bound N(5,7,4) ≥ 762 follows by explicit construction due to Pucho, 2012-04-25.
The bound N(6,7,4) ≥ 1512 follows by explicit construction due to Pucho, 2011-03-02.
The bound N(7,7,4) ≥ 3024 follows by explicit construction due to Pucho, 2012-04-25.
The bound N(10,3,4) ≥ 420 follows by explicit construction due to PacoHH, 2012-12-21.
The bound N(11,3,4) ≥ 784 follows by explicit construction due to Pucho, 2012-05-21.
The bound N(9,4,4) ≥ 548 follows by explicit construction due to PFPGU, 2012-05-21.
The bound N(10,4,4) ≥ 1050 follows by explicit construction due to PacoHH, 2012-11-08.
The bound N(0,13,4) ≥ 8559 follows by explicit construction due to Código, 2011-03-26.
The bound N(1,13,4) ≥ 16767 follows by explicit construction due to Código, 2011-03-27.
The bound N(0,14,4) ≥ 24786 follows by explicit construction due to Código, 2011-03-19.
All unexplained lower bounds can be found in the file provided by PacoHH, 2011-03-03.
m\n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|---|
0 | 1 | 1 | 1 | 1 | 1 | 3 | 4 | 10 |
1 | 1 | 1 | 1 | 1 | 2 | 3 | 8 | 18 |
2 | 1 | 1 | 1 | 2 | 3 | 6 | 15 | 36 |
3 | 1 | 1 | 2 | 3 | 6 | 12 | 24-27 | 72 |
4 | 1 | 2 | 2 | 4 | 9 | 18 | 48-54 | 144 |
5 | 2 | 2 | 4 | 6 | 14 | 33-36 | 96-108 | 216-288 |
6 | 2 | 3 | 6 | 12 | 28 | 66-72 | 144-216 | 378-563 |
7 | 2 | 4 | 9 | 20-24 | 44-56 | 99-144 | 255-407 | 648-1047 |
8 | 4 | 7 | 16 | 34-44 | 84-112 | 180-288 | 453-755 | |
9 | 6 | 12 | 26-31 | 64-85 | 136-216 | 318-534 | ||
10 | 12 | 24 | 48-61 | 128-158 | 234-390 | |||
11 | 24 | 38-43 | 96-115 | 192-292 | ||||
12 | 32 | 64-83 | 192-213 | |||||
13 | 64 | 128-156 | ||||||
14 | 128 |
m\n | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|
0 | 27 | 81 | 243 | 729 | 729-1557 | 2187-4078 | 6561-10624 |
1 | 54 | 162 | 486 | 729-1138 | 1458-2927 | 4374-7598 | |
2 | 108 | 324 | 729-849 | 972-2105 | 2916-5512 | ||
3 | 216 | 486-601 | 729-1519 | 1944-3964 | |||
4 | 324-420 | 729-1099 | 1458-2801 | ||||
5 | 486-791 | 1458-2000 | |||||
6 | 972-1437 |
N(0,12,5) ≤ 1557 and N(0,13,5) ≤ 4078 is due to Gijswijt et al., see above.
The bound N(6,4,5) ≥ 28 follows by explicit construction due to Joan, 2010-11-21.
The bound N(8,3,5) ≥ 34 follows by explicit construction due to Pucho, 2011-03-19.
The bound N(8,4,5) ≥ 84 follows by explicit construction due to Código, 2011-03-19.
The bound N(8,5,5) ≥ 180 follows by explicit construction due to PacoHH, 2011-06-07.
The bounds N(11,1,5) ≥ 38 and N(7,6,5) ≥ 240 follow by explicit construction due to PacoHH, 2011-02-18 or earlier. This link also reveals that PacoHH is Francisco Hernández Hernández.
The bound N(6,7,5) ≥ 378 follows by explicit construction due to spaik, 2011-06-02.
The bound N(8,6,5) ≥ 453 follows by explicit construction due to PacoHH, 2011-06-05.
The bound N(7,6,5) ≥ 255 was announced by Código. The bound N(5,9,5) ≥ 1458 was announced by Pucho. Constructions are given here.
m\n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|---|
0 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 |
1 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 6 |
2 | 1 | 1 | 1 | 1 | 2 | 3 | 6 | 12 |
3 | 1 | 1 | 1 | 2 | 3 | 4 | 12 | 24 |
4 | 1 | 1 | 2 | 2 | 4 | 8 | 18 | 48 |
5 | 1 | 2 | 2 | 3 | 6 | 12 | 33-36 | 96 |
6 | 2 | 2 | 3 | 6 | 12 | 24 | 66-72 | 144-192 |
7 | 2 | 2 | 4 | 8 | 18-22 | 44-48 | 99-142 | 216-375 |
8 | 2 | 4 | 7 | 16 | 32-39 | 66-96 | 168-273 | |
9 | 4 | 6 | 12 | 26-30 | 56-75 | 112-192 | ||
10 | 6 | 12 | 24 | 44-56 | 88-144 | |||
11 | 12 | 24 | 38-43 | 88-107 | ||||
12 | 24 | 32 | 64-83 | |||||
13 | 32 | 64 | ||||||
14 | 64 |
m\n | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|
0 | 9 | 27 | 81 | 243 | 729 | 729-1449 | 2187-3660 |
1 | 18 | 54 | 162 | 486 | 729-1073 | 1458-2657 | |
2 | 36 | 108 | 324 | 729-803 | 972-1935 | ||
3 | 72 | 216 | 486-574 | 729-1414 | |||
4 | 144 | 324-425 | 729-1036 | ||||
5 | 216-276 | 486-744 | |||||
6 | 324-527 |
N(0,13,6) ≤ 1449 is due to Gijswijt et al., see above.
N(10,3,6) ≥ 44 follows by explicit construction due to Pucho, 2011-03-15.
N(6,5,6) ≥ 24 follows by explicit construction due to Pucho, 2011-03-15.
N(9,4,6) ≥ 56 follows by explicit construction due to Joan, 2011-03-15.
N(10,4,6) ≥ 88 follows by explicit construction due to PacoHH, 2011-03-15.
N(11,3,6) ≥ 88 follows by explicit construction due to Pedro fdez, 2011-05-05.
N(8,6,6) ≥ 168 follows by explicit construction due to spaik, 2012-04-18.
N(2,12,6) ≥ 972 follows by explicit construction due to PacoHH, 2011-07-04.
N(11,2,6) ≥ 38 restores a lower bound that was earlier given using an erroneous argument, this time using an explicit construction by anonymous, given on this forum page (in D6.zip).
m\n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 6 | 14 | 36 | 60-108 | 162-324 | 243-805 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 6 | 12 | 24-28 | 48-72 | 108-216 | 243-591 | |
2 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 4 | 9 | 18-24 | 36-56 | 75-144 | 162-432 | ||
3 | 1 | 1 | 1 | 1 | 2 | 3 | 4 | 7 | 16-18 | 28-48 | 57-112 | 108-288 | |||
4 | 1 | 1 | 1 | 2 | 2 | 3 | 6 | 14 | 24-36 | 48-96 | 84-224 | ||||
5 | 1 | 1 | 2 | 2 | 3 | 6 | 12 | 21-28 | 36-72 | 69-174 | |||||
6 | 1 | 2 | 2 | 3 | 4 | 9 | 18-23 | 33-53 | 61-130 | ||||||
7 | 2 | 2 | 2 | 4 | 8 | 16 | 24-41 | 58-99 | |||||||
8 | 2 | 2 | 4 | 6 | 16 | 22-31 | 44-74 | ||||||||
9 | 2 | 3 | 4 | 12 | 18-23 | 36-53 | |||||||||
10 | 2 | 4 | 8 | 16-18 | 28-41 | ||||||||||
11 | 4 | 6 | 12 | 24-31 | |||||||||||
12 | 4 | 12 | 20-24 | ||||||||||||
13 | 8 | 16-19 | |||||||||||||
14 | 16 |
N(0,10,7) ≤ 14 is due to
K.S. Kapralov,
The nonexistence of ternary (10,15,7) codes,
Proc. 7th international workshop on algebraic and combinatorial coding theory (ACCT'2000), Bansko, Bulgaria, 18-24 June, 2000, pp. 189-192.
N(0,11,7) ≤ 36 is due to
M.J. Letourneau & S.K. Houghten,
Optimal Ternary (11,7) and (14,10) Codes,
Journal of Combinat. Math. and Combinat. Computing 51 (2004) 159-164.
The bound N(0,12,7) ≥ 60 follows by explicit construction due to spaik, 2011-06-22.
The bound N(0,13,7) ≥ 162 follows by explicit construction (18 cosets of <1011100011122,0100011122111>) due to spaik, 2011-06-11.
The bound N(1,11,7) ≥ 48 follows by explicit construction (16 cosets of <0319>) due to Código, 2011-03-13.
The bounds N(1,12,7) ≥ 108 and N(2,12,7) ≥ 162 and N(3,11,7) ≥ 108 follow from N(0,13,7) ≥ 162.
The bound N(1,13,7) ≥ 243 follows by explicit construction due to PacoHH, 2011-06-12.
The bound N(2,11,7) ≥ 75 follows from N(2,12,8) ≥ 75.
The bound N(3,9,7) ≥ 28 follows by explicit construction due to spaik, 2012-04-08.
The bound N(3,10,7) ≥ 57 follows by explicit construction due to spaik, 2012-05-09.
The bounds N(4,8,7) ≥ 24, N(5,8,7) ≥ 36 follow by explicit construction due to Pucho, 2011-03-13.
The bound N(4,9,7) ≥ 48 follows by explicit construction due to Código, 2011-04-02.
The bound N(4,10,7) ≥ 84 follows by explicit construction due to spaik, 2012-04-17.
The bound N(5,7,7) ≥ 21 follows by explicit construction due to PacoHH, 2010-12-05.
The bound N(5,9,7) ≥ 69 follows by explicit construction due to spaik, 2011-06-11.
The bound N(6,6,7) ≥ 18 follows by explicit construction due to PacoHH, 2010-12-17.
The bound N(6,7,7) ≥ 33 follows by explicit construction due to spaik, 2011-07-18.
The bound N(6,8,7) ≥ 61 follows by explicit construction due to spaik, 2012-04-02.
The bounds N(7,7,7) ≥ 58 and N(6,8,7) ≥ 60 follow by explicit construction due to spaik, 2011-07-17.
The bound N(8,5,7) ≥ 22 follows by explicit construction due to PacoHH, 2012-03-26.
The bound N(8,6,7) ≥ 44 follows by explicit construction due to spaik, 2012-12-19.
The bound N(9,5,7) ≥ 36 follows by explicit construction due to PacoHH, 2012-12-16.
The bound N(10,4,7) ≥ 28 follows by explicit construction due to Pucho, 2011-03-13.
m\n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 6 | 12 | 36 | 54-95 | 108-237 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 4 | 9 | 24 | 39-67 | 81-179 | |
2 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 4 | 7 | 18 | 36-48 | 75-134 | ||
3 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 3 | 6 | 13 | 24-36 | 54-96 | |||
4 | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 6 | 12 | 24-26 | 42-72 | ||||
5 | 1 | 1 | 1 | 2 | 2 | 3 | 4 | 8 | 18-24 | 30-52 | |||||
6 | 1 | 1 | 2 | 2 | 3 | 4 | 7 | 14-16 | 28-44 | ||||||
7 | 1 | 2 | 2 | 2 | 4 | 6 | 12 | 23-32 | |||||||
8 | 2 | 2 | 2 | 3 | 6 | 12 | 20-24 | ||||||||
9 | 2 | 2 | 3 | 4 | 9 | 18 | |||||||||
10 | 2 | 2 | 4 | 6 | 16 | ||||||||||
11 | 2 | 4 | 6 | 12 | |||||||||||
12 | 4 | 4 | 12 | ||||||||||||
13 | 4 | 8 | |||||||||||||
14 | 8 |
N(0,13,8) ≤ 95 is due to Gijswijt et al., see above.
N(0,13,8) ≥ 54 follows by explicit construction due to PacoHH, 2011-03-14.
N(1,12,8) ≥ 39 follows by explicit construction due to Código, 2011-04-04.
N(4,10,8) ≥ 42 follows by explicit construction due to Joan, 2011-07-23.
N(3,11,8) ≥ 45 follows by explicit construction due to PacoHH, 2011-04-26.
N(2,12,8) ≥ 75 follows by explicit construction due to spaik, 2011-06-26.
N(1,13,8) ≥ 81 follows by explicit construction due to spaik, 2011-06-27.
N(0,14,8) ≥ 108 follows by explicit construction due to Joan, 2011-07-24.
N(7,7,8) ≥ 23 follows by explicit construction due to spaik, 2011-07-23.
N(6,8,8) ≥ 28 follows by explicit construction due to spaik, 2012-04-10.
N(4,9,8) ≥ 24 follows by explicit construction given by Pedro fdez, 2011-04-12.
N(5,9,8) ≥ 30 follows by explicit construction given by PacoHH, 2011-03-18.
N(8,6,8) ≥ 20 follows by explicit construction given by Pucho, 2012-04-22.
m\n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 4 | 9 | 27 | 36-62 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 4 | 6 | 18 | 30-50 | |
2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 3 | 6 | 12 | 27-36 | ||
3 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 3 | 6 | 10 | 20-24 | |||
4 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 4 | 8 | 18-20 | ||||
5 | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 4 | 6 | 14-16 | |||||
6 | 1 | 1 | 1 | 2 | 2 | 3 | 4 | 6 | 12 | ||||||
7 | 1 | 1 | 2 | 2 | 2 | 3 | 6 | 10 | |||||||
8 | 1 | 2 | 2 | 2 | 3 | 4 | 8 | ||||||||
9 | 2 | 2 | 2 | 3 | 4 | 6 | |||||||||
10 | 2 | 2 | 2 | 4 | 6 | ||||||||||
11 | 2 | 2 | 4 | 6 | |||||||||||
12 | 2 | 3 | 4 | ||||||||||||
13 | 2 | 4 | |||||||||||||
14 | 4 |
N(0,14,9) ≥ 36 follows by explicit construction due to spaik, 2011-04-09.
N(1,13,9) ≥ 30 follows by explicit construction due to spaik, 2011-06-05.
N(3,11,9) ≥ 20 follows by explicit construction due to spaik, 2012-04-30.
m\n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 4 | 6 | 13 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 3 | 6 | 10-12 | |
2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 3 | 6 | 9 | ||
3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 3 | 4 | 7 | |||
4 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 4 | 6 | ||||
5 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 4 | 6 | |||||
6 | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 3 | 6 | ||||||
7 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 4 | |||||||
8 | 1 | 1 | 2 | 2 | 2 | 3 | 4 | ||||||||
9 | 1 | 2 | 2 | 2 | 3 | 4 | |||||||||
10 | 2 | 2 | 2 | 2 | 4 | ||||||||||
11 | 2 | 2 | 2 | 3 | |||||||||||
12 | 2 | 2 | 3 | ||||||||||||
13 | 2 | 2 | |||||||||||||
14 | 2 |