Invariants for several forms, multiple forms.
Poincaré series for 1 form, for 2 forms, for more forms.
The discriminant of a form of degree n is an invariant of degree 2n–2.
For even n = 2j the catalecticant (see below under quartics) is an invariant of degree j+1.
Poincaré series: 1/(1–t2).
Numbers of basic invariants and covariants (d: degree in the coefficients, o: order in the variables):
d\o | 0 | 2 | # | cum |
---|---|---|---|---|
1 | - | 1 | 1 | 1 |
2 | 1 | - | 1 | 2 |
Basic invariant in bracket form:
Name | Bracket monomial |
---|---|
I2 | [1,2]^2 = ac - b^2 |
Poincaré series: 1/(1–t4).
Numbers of basic invariants and covariants:
d\o | 0 | 1 | 2 | 3 | # | cum |
---|---|---|---|---|---|---|
1 | - | - | - | 1 | 1 | 1 |
2 | - | - | 1 | - | 1 | 2 |
3 | - | - | - | 1 | 1 | 3 |
4 | 1 | - | - | - | 1 | 4 |
Basic invariant in bracket form:
Name | Bracket monomial |
---|---|
I4 | [1,2]^2 [1,3] [2,4] [3,4]^2 = a^2d^2 – 6abcd + 4ac^3 – 3b^2c^2 + 4b^3d |
Poincaré series: 1/(1–t2)(1–t3).
Numbers of basic invariants and covariants:
d\o | 0 | 2 | 4 | 6 | # | cum |
---|---|---|---|---|---|---|
1 | - | - | 1 | - | 1 | 1 |
2 | 1 | - | 1 | - | 2 | 3 |
3 | 1 | - | - | 1 | 2 | 5 |
Basic invariants in bracket form:
Name | Bracket monomial |
---|---|
I2 | [1,2]^4 = ae – 4bd + 3c^2 |
I3 | [1,2]^2 [1,3]^2 [2,3]^2 = ace – ad^2 – b^2e – c^3 + 2bcd |
This last invariant can be written as determinant of the 3x3 matrix
More generally, for forms of even degree 2j, the invariant given by ∏i<j [i,j]2, known as the catalecticant, can be written as the determinant of the (j+1)x(j+1) matrix
a b c b c d c d e
The discriminant equals I23 – 27I32.
a0 a1 ... aj a1 a2 ... aj+1 ... aj aj+1 ... a2j
Poincaré series: (1+t18)/(1–t4)(1–t8)(1–t12)
Numbers of basic invariants and covariants (Gordan (1868)):
d\o | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | # | cum |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | 1 | - | - | - | - | 1 | 1 |
2 | - | - | 1 | - | - | - | 1 | - | - | - | 2 | 3 |
3 | - | - | - | 1 | - | 1 | - | - | - | 1 | 3 | 6 |
4 | 1 | - | - | - | 1 | - | 1 | - | - | - | 3 | 9 |
5 | - | 1 | - | 1 | - | - | - | 1 | - | - | 3 | 12 |
6 | - | - | 1 | - | 1 | - | - | - | - | - | 2 | 14 |
7 | - | 1 | - | - | - | 1 | - | - | - | - | 2 | 16 |
8 | 1 | - | 1 | - | - | - | - | - | - | - | 2 | 18 |
9 | - | - | - | 1 | - | - | - | - | - | - | 1 | 19 |
10 | - | - | - | - | - | - | - | - | - | - | - | 19 |
11 | - | 1 | - | - | - | - | - | - | - | - | 1 | 20 |
12 | 1 | - | - | - | - | - | - | - | - | - | 1 | 21 |
13 | - | 1 | - | - | - | - | - | - | - | - | 1 | 22 |
... | - | - | - | - | - | - | - | - | - | - | - | 22 |
18 | 1 | - | - | - | - | - | - | - | - | - | 1 | 23 |
Basic invariants in bracket form:
Name | Bracket monomial |
---|---|
I4 | [1,2]^3 [1,3]^2 [2,4]^2 [3,4]^3 = a^2f^2 – 10abef + 4acdf + 16ace^2 – 12ad^2e + 16b^2df + 9b^2e^2 – 12bc^2f – 76bcde + 48bd^3 + 48c^3e –32c^2d^2 |
I8 | [1,2]^3 [1,3]^2 [2,4]^2 [3,4] [3,5]^2 [4,6]^2 [5,7]^3 [6,8]^3 [7,8]^2 |
I12 | [1,2]^2 [1,3] [1,4]^2 [2,5]^3 [3,6]^3 [3,7] [4,7] [4,8]^2 [5,8]^2 [6,8] [6,9] [7,10]^3 [9,10]^2 [9,11] [9,12] [11,12]^4 |
I18 | [1,2] [1,3]^4 [2,4]^2 [2,5]^2 [3,5] [4,5]^2 [4,6] [6,7] [6,8]^3 [7,8] [7,9]^2 [7,10] [8,10] [9,10] [9,11]^2 [10,11]^2 [11,12] [12,13]^4 [13,14] [14,15]^3 [14,16] [15,16] [15,17] [16,17] [16,18]^2 [17,18]^3 |
Poincaré series: (1+t15) / (1–t2)(1–t4)(1–t6)(1–t10)
Numbers of basic invariants and covariants (Gordan (1868)):
d\o | 0 | 2 | 4 | 6 | 8 | 10 | 12 | # | cum |
---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | 1 | - | - | - | 1 | 1 |
2 | 1 | - | 1 | - | 1 | - | - | 3 | 4 |
3 | - | 1 | - | 1 | 1 | - | 1 | 4 | 8 |
4 | 1 | - | 1 | 1 | - | 1 | - | 4 | 12 |
5 | - | 1 | 1 | - | 1 | - | - | 3 | 15 |
6 | 1 | - | - | 2 | - | - | - | 3 | 18 |
7 | - | 1 | 1 | - | - | - | - | 2 | 20 |
8 | - | 1 | - | - | - | - | - | 1 | 21 |
9 | - | - | 1 | - | - | - | - | 1 | 22 |
10 | 1 | 1 | - | - | - | - | - | 2 | 24 |
11 | - | - | - | - | - | - | - | - | 24 |
12 | - | 1 | - | - | - | - | - | 1 | 25 |
... | - | - | - | - | - | - | - | - | 25 |
15 | 1 | - | - | - | - | - | - | 1 | 26 |
Basic invariants in bracket form:
Name | Bracket monomial |
---|---|
I2 | [1,2]^6 = ag – 6bf + 15ce – 10d^2 |
I4 | [1,2]^4 [1,3]^2 [2,4]^2 [3,4]^4 |
I6 | [1,2]^4 [1,3]^2 [2,4]^2 [3,5]^4 [4,6]^4 [5,6]^2 |
I10 | [1,2]^3 [1,3]^3 [2,3]^2 [2,4] [3,5] [4,6]^4 [4,7] [5,7]^3 [5,8]^2 [6,8]^2 [7,9]^2 [8,10]^2 [9,10]^4 |
I15 | [1,2]^3 [1,3]^3 [2,3]^2 [2,4] [3,4] [4,5] [4,6]^3 [5,6] [5,7]^4 [6,7] [6,8] [7,8] [8,9]^3 [8,10] [9,10]^3 [10,11]^2 [11,12]^4 [12,13] [12,14] [13,14]^2 [13,15]^3 [14,15]^3 |
Poincaré series: (1 + 2t8 + 4t12 + 4t14 + 5t16 + 9t18 + 6t20 + 9t22 + 8t24 + 9t26 + 6t28 + 9t30 + 5t32 + 4t34 + 4t36 + 2t40 + t48) / (1–t4)(1–t8)(1–t12)2(1–t20)
Numbers of basic invariants (Dixmier & Lazard (1986)) and covariants (Cröni (2002)):
d\o | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | # | cum |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | - | 1 | - | - | - | - | - | - | - | - | 1 | 1 |
2 | - | - | 1 | - | - | - | 1 | - | - | - | 1 | - | - | - | - | - | 3 | 4 |
3 | - | - | - | 1 | - | 1 | - | 1 | - | 1 | - | 1 | - | - | - | 1 | 6 | 10 |
4 | 1 | - | - | - | 2 | - | 1 | - | 2 | - | 1 | - | - | - | 1 | - | 8 | 18 |
5 | - | 1 | - | 2 | - | 2 | - | 2 | - | 2 | - | - | - | 1 | - | - | 10 | 28 |
6 | - | - | 3 | - | 2 | - | 2 | - | 2 | - | - | - | 1 | - | - | - | 10 | 38 |
7 | - | 3 | - | 2 | - | 4 | - | 2 | - | - | - | 1 | - | - | - | - | 12 | 50 |
8 | 3 | - | 3 | - | 3 | - | 3 | - | - | - | 1 | - | - | - | - | - | 13 | 63 |
9 | - | 3 | - | 5 | - | 2 | - | - | - | 1 | - | - | - | - | - | - | 11 | 74 |
10 | - | - | 4 | - | 4 | - | - | - | 1 | - | - | - | - | - | - | - | 9 | 83 |
11 | - | 5 | - | 3 | - | - | - | 1 | - | - | - | - | - | - | - | - | 9 | 92 |
12 | 6 | - | 6 | - | - | - | 1 | - | - | - | - | - | - | - | - | - | 13 | 105 |
13 | - | 7 | - | 1 | - | 1 | - | - | - | - | - | - | - | - | - | - | 9 | 114 |
14 | 4 | - | - | - | 2 | - | - | - | - | - | - | - | - | - | - | - | 6 | 120 |
15 | - | 3 | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | 4 | 124 |
16 | 2 | - | 3 | - | - | - | - | - | - | - | - | - | - | - | - | - | 5 | 129 |
17 | - | 2 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 2 | 131 |
18 | 9 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 9 | 140 |
19 | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 | 141 |
20 | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 | 142 |
21 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 142 |
22 | 2 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 2 | 144 |
23 | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 | 145 |
... | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 145 |
26 | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 | 146 |
... | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 146 |
30 | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 | 147 |
See also Bedratyuk (2007, 2009).
Basic invariants in bracket form:
Name | Bracket monomial |
---|---|
I4 | [1,2]^6 [1,3] [2,4] [3,4]^6 = a^2h^2 – 14abgh + 18acfh + 24acg^2 – 10adeh – 60adfg + 40ae^2g + 24b^2fh + 25b^2g^2 – 60bceh – 234bcfg + 40bd^2h + 50bdeg + 360bdf^2 – 240be^2f + 360c^2eg + 81c^2f^2 – 240cd^2g – 990cdef + 600ce^3 + 600d^3f – 375d^2e^2 |
I8a | [1,2]^6 [1,3] [2,4] [3,4]^4 [3,5]^2 [4,6]^2 [5,6]^4 [5,7] [6,8] [7,8]^6 |
I8b | [1,2]^6 [1,3] [2,4] [3,4]^3 [3,5]^2 [3,6] [4,6]^3 [5,6]^3 [5,7] [5,8] [7,8]^6 |
I8c | [1,2]^5 [1,3] [1,4] [2,4]^2 [3,5]^4 [3,6]^2 [4,6]^2 [4,7]^2 [5,7]^2 [5,8] [6,8]^3 [7,8]^3 |
I12a | [1,2]^6 [1,3] [2,3] [3,4]^2 [3,5] [3,6] [3,7] [4,7] [4,8]^2 [4,9]^2 [5,9]^5 [5,10] [6,10]^4 [6,11]^2 [7,11]^5 [8,12]^5 [10,12]^2 |
I12b | [1,2]^2 [1,3]^2 [1,4]^3 [2,4] [2,5]^4 [3,5]^2 [3,6]^3 [4,6] [4,7] [4,8] [5,8] [6,9]^3 [7,9] [7,10]^4 [7,11] [8,11]^5 [9,12]^3 [10,12]^3 [11,12] |
I12c | [1,2]^2 [1,3]^5 [2,3] [2,4]^3 [2,5] [3,5] [4,6]^3 [4,7] [5,8]^5 [6,9]^4 [7,9]^3 [7,10]^3 [8,10] [8,11] [10,11] [10,12]^2 [11,12]^5 |
I12d | [1,2]^6 [1,3] [2,3] [3,4]^4 [3,5] [4,5]^2 [4,6] [5,6] [5,7]^2 [5,8] [6,8]^2 [6,9]^3 [7,9]^2 [7,10]^2 [7,11] [8,11]^4 [9,11] [9,12] [10,12]^5 [11,12] |
I12e | [1,2]^3 [1,3]^2 [1,4]^2 [2,4]^4 [3,5]^5 [4,5] [5,6] [6,7]^2 [6,8]^4 [7,9]^2 [7,10]^3 [8,11]^3 [9,11]^3 [9,12]^2 [10,12]^4 [11,12] |
I12f | [1,2]^4 [1,3] [1,4]^2 [2,5] [2,6]^2 [3,6]^3 [3,7]^3 [4,7] [4,8]^4 [5,8]^2 [5,9]^3 [5,10] [6,10]^2 [7,10]^2 [7,11] [8,11] [9,11]^2 [9,12]^2 [10,12]^2 [11,12]^3 |
I14a | [1,2]^2 [1,3]^5 [2,3] [2,4]^4 [3,5] [4,5]^2 [4,6] [5,6]^4 [6,7]^2 [7,8]^4 [7,9] [8,9]^2 [8,10] [9,11]^3 [9,12] [10,12]^3 [10,13]^3 [11,13]^2 [11,14]^2 [12,14]^3 [13,14]^2 |
I14b | [1,2]^6 [1,3] [2,4] [3,4] [3,5]^5 [4,5] [4,6]^4 [5,6] [6,7]^2 [7,8]^3 [7,9]^2 [8,9] [8,10]^2 [8,11] [9,11]^4 [10,11] [10,12]^4 [11,12] [12,13] [12,14] [13,14]^6 |
I14c | [1,2]^6 [1,3] [2,3] [3,4]^4 [3,5] [4,5] [4,6]^2 [5,6]^4 [5,7] [6,7] [7,8]^3 [7,9]^2 [8,9]^3 [8,10] [9,10] [9,11] [10,11]^2 [10,12]^2 [10,13] [11,13]^4 [12,14]^5 [13,14]^2 |
I14d | [1,2]^3 [1,3]^2 [1,4]^2 [2,4] [2,5]^2 [2,6] [3,6]^5 [4,6] [4,7]^2 [4,8] [5,8]^5 [7,9] [7,10]^2 [7,11]^2 [8,11] [9,11]^4 [9,12]^2 [10,13]^5 [12,14]^5 [13,14]^2 |
I16a | [1,2]^4 [1,3] [1,4] [1,5] [2,5]^3 [3,5]^2 [3,6]^2 [3,7]^2 [4,7]^3 [4,8]^2 [4,9] [5,9] [6,10]^4 [6,11] [7,11]^2 [8,11] [8,12]^4 [9,12] [9,13]^4 [10,14]^2 [10,15] [11,15]^3 [12,15]^2 [13,15] [13,16]^2 [14,16]^5 |
I16b | [1,2] [1,3]^6 [2,3] [2,4]^4 [2,5] [4,5]^3 [5,6]^3 [6,7]^3 [6,8] [7,8]^2 [7,9] [7,10] [8,10]^4 [9,10]^2 [9,11] [9,12]^3 [11,13]^6 [12,14]^2 [12,15]^2 [13,15] [14,15] [14,16]^4 [15,16]^3 |
I18a | [1,2]^5 [1,3]^2 [2,4]^2 [3,5]^4 [3,6] [4,6]^5 [5,7]^3 [6,7] [7,8]^2 [7,9] [8,9]^2 [8,10]^3 [9,11]^4 [10,11]^2 [10,12]^2 [11,13] [12,14]^5 [13,15]^4 [13,16]^2 [14,16] [14,17] [15,17]^3 [16,18]^4 [17,18]^3 |
I18b | [1,2]^3 [1,3]^3 [1,4] [2,4]^3 [2,5] [3,5]^4 [4,6]^3 [5,7]^2 [6,8]^2 [6,9]^2 [7,9]^3 [7,10]^2 [8,10]^2 [8,11]^3 [9,11] [9,12] [10,13]^3 [11,13]^2 [11,14] [12,14]^4 [12,15]^2 [13,15]^2 [14,15] [14,16] [15,17]^2 [16,17]^2 [16,18]^4 [17,18]^3 |
I18c | [1,2]^6 [1,3] [2,4] [3,4]^2 [3,5]^4 [4,6]^4 [5,6]^2 [5,7] [6,7] [7,8]^5 [8,9]^2 [9,10]^2 [9,11]^3 [10,11]^3 [10,12] [10,13] [11,13] [12,13]^4 [12,14]^2 [13,14] [14,15]^4 [15,16]^2 [15,17] [16,17]^2 [16,18]^3 [17,18]^4 |
I18d | [1,2]^4 [1,3] [1,4]^2 [2,4]^3 [3,4]^2 [3,5]^3 [3,6] [5,7]^2 [5,8]^2 [6,8]^2 [6,9]^3 [6,10] [7,10]^3 [7,11]^2 [8,11]^3 [9,12]^4 [10,13]^3 [11,13]^2 [12,13] [12,14]^2 [13,15] [14,15] [14,16]^4 [15,17]^4 [15,18] [16,18]^3 [17,18]^3 |
I18e | [1,2]^6 [1,3] [2,3] [3,4]^2 [3,5]^2 [3,6] [4,6]^4 [4,7] [5,7]^3 [5,8]^2 [6,8]^2 [7,8]^2 [7,9] [8,9] [9,10]^2 [9,11]^3 [10,11]^4 [10,12] [12,13]^5 [12,14] [13,14] [13,15] [14,15]^4 [14,16] [15,16] [15,17] [16,17]^2 [16,18]^3 [17,18]^4 |
I18f | [1,2] [1,3]^5 [1,4] [2,4]^3 [2,5]^3 [3,5]^2 [4,5] [4,6]^2 [5,7] [6,7]^2 [6,8]^3 [7,8]^3 [7,9] [8,10] [9,10]^4 [9,11] [9,12] [10,13]^2 [11,13]^2 [11,14]^4 [12,14]^2 [12,15]^2 [12,16]^2 [13,16]^3 [14,16] [15,17]^3 [15,18]^2 [16,18] [17,18]^4 |
I18g | [1,2]^2 [1,3]^4 [1,4] [2,4]^2 [2,5]^3 [3,5]^3 [4,5] [4,6]^3 [6,7]^2 [6,8]^2 [7,8]^2 [7,9]^3 [8,9] [8,10]^2 [9,10]^3 [10,11]^2 [11,12]^3 [11,13]^2 [12,13]^2 [12,14] [12,15] [13,15]^3 [14,16]^6 [15,17]^2 [15,18] [16,18] [17,18]^5 |
I18h | [1,2]^3 [1,3]^2 [1,4]^2 [2,4] [2,5]^2 [2,6] [3,6] [3,7]^4 [4,8]^3 [4,9] [5,10]^5 [6,10]^2 [6,11]^2 [6,12] [7,13]^2 [7,14] [8,14]^4 [9,15]^6 [11,15] [11,16]^4 [12,16] [12,17]^5 [13,17]^2 [13,18]^3 [14,18]^2 [16,18]^2 |
I18i | [1,2]^4 [1,3]^3 [2,3] [2,4]^2 [3,5]^3 [4,5]^3 [4,6] [4,7] [5,7] [6,7]^4 [6,8]^2 [7,9] [8,10]^2 [8,11]^2 [8,12] [9,12] [9,13]^5 [10,14]^2 [10,15]^3 [11,16]^5 [12,16]^2 [12,17]^3 [13,17]^2 [14,17]^2 [14,18]^3 [15,18]^4 |
I20 | [1,2]^3 [1,3]^3 [1,4] [2,4]^4 [3,5] [3,6]^3 [4,7]^2 [5,7] [5,8]^3 [5,9]^2 [6,9]^3 [6,10] [7,10]^4 [8,10]^2 [8,11] [8,12] [9,13] [9,14] [11,14]^4 [11,15]^2 [12,15]^2 [12,16] [12,17]^3 [13,17]^4 [13,18]^2 [14,18] [14,19] [15,19]^3 [16,19]^3 [16,20]^3 [18,20]^4 |
I22a | [1,2]^3 [1,3]^4 [2,3]^2 [2,4]^2 [3,5] [4,5]^2 [4,6]^3 [5,6]^3 [5,7] [6,8] [7,8]^3 [7,9]^3 [8,9]^2 [8,10] [9,10]^2 [10,11] [10,12]^2 [10,13] [11,14]^4 [11,15]^2 [12,15]^2 [12,16]^3 [13,16]^2 [13,17]^2 [13,18]^2 [14,18]^3 [15,18] [15,19] [15,20] [16,20]^2 [17,20]^2 [17,21]^3 [18,21] [19,21]^2 [19,22]^4 [20,22]^2 [21,22] |
I22b | [1,2]^3 [1,3]^4 [2,3] [2,4]^3 [3,4] [3,5] [4,6]^2 [4,7] [5,7]^2 [5,8]^2 [5,9]^2 [6,9]^4 [6,10] [7,10]^4 [8,11]^2 [8,12]^2 [8,13] [9,13] [10,14]^2 [11,14] [11,15]^4 [12,16]^4 [12,17] [13,17] [13,18]^4 [14,19]^4 [15,19] [15,20]^2 [16,20]^3 [17,20]^2 [17,21]^3 [18,21] [18,22]^2 [19,22]^2 [21,22]^3 |
I26 | [1,2]^2 [1,3]^2 [1,4]^3 [2,4]^3 [2,5]^2 [3,5]^2 [3,6]^3 [4,6] [5,7]^2 [5,8] [6,8]^3 [7,8]^2 [7,9]^2 [7,10] [8,10] [9,10] [9,11]^4 [10,11] [10,12]^2 [10,13] [11,13]^2 [12,13]^2 [12,14]^3 [13,14]^2 [14,15]^2 [15,16]^4 [15,17] [16,17]^2 [16,18] [17,18]^2 [17,19]^2 [18,19] [18,20]^3 [19,21]^2 [19,22]^2 [20,22]^4 [21,22] [21,23]^2 [21,24]^2 [23,24]^4 [23,25] [24,26] [25,26]^6 |
I30 | [1,2]^2 [1,3]^2 [1,4]^3 [2,4]^4 [2,5] [3,5]^2 [3,6]^2 [3,7] [5,7]^4 [6,8]^3 [6,9]^2 [7,9]^2 [8,9]^2 [8,10] [8,11] [9,11] [10,11]^2 [10,12]^4 [11,13]^3 [12,13] [12,14]^2 [13,15]^2 [13,16] [14,16]^4 [14,17] [15,17]^3 [15,18] [15,19] [16,19]^2 [17,20]^3 [18,21]^2 [18,22]^4 [19,22]^2 [19,23]^2 [20,23]^2 [20,24]^2 [21,24] [21,25]^4 [22,25] [23,25]^2 [23,26] [24,26]^3 [24,27] [26,27]^3 [27,28] [27,29]^2 [28,29]^2 [28,30]^4 [29,30]^3 |
Poincaré series: (1+t8+t9+t10+t18) / (1–t2)(1–t3)(1–t4)(1–t5)(1–t6)(1–t7)
Numbers of basic invariants and covariants:
d\o | 0 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | # | cum |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 1 | - | - | - | - | - | 1 | 1 |
2 | 1 | - | 1 | - | 1 | - | 1 | - | - | - | 4 | 5 |
3 | 1 | - | 1 | 1 | 1 | 1 | 1 | 1 | - | 1 | 8 | 13 |
4 | 1 | - | 2 | 1 | 1 | 2 | 1 | 1 | - | 1 | 10 | 23 |
5 | 1 | 1 | 2 | 2 | 1 | 3 | - | 1 | - | - | 11 | 34 |
6 | 1 | 1 | 2 | 3 | 1 | 1 | - | - | - | - | 9 | 43 |
7 | 1 | 2 | 2 | 3 | - | - | - | - | - | - | 8 | 51 |
8 | 1 | 2 | 2 | 2 | - | - | - | - | - | - | 7 | 58 |
9 | 1 | 3 | 1 | - | - | - | - | - | - | - | 5 | 63 |
10 | 1 | 2 | - | - | - | - | - | - | - | - | 3 | 66 |
11 | - | 2 | - | - | - | - | - | - | - | - | 2 | 68 |
12 | - | 1 | - | - | - | - | - | - | - | - | 1 | 69 |
(See Sylvester & Franklin (1879), von Gall (1880), Shioda (1967), Cröni (2002), Bedratyuk (2006).)
Basic invariants in bracket form:
Name | Bracket monomial |
---|---|
I2 | [1,2]^8 = ai – 8bh + 28cg – 56df + 35e^2 |
I3 | [1,2]^4 [1,3]^4 [2,3]^4 = aei – 4afh + 3ag^2 – 4bdi + 12beh – 8bfg + 3c^2i – 8cdh – 22ceg + 24cf^2 + 24d^2g – 36def + 15e^3 |
I4 | [1,2]^4 [1,3]^4 [2,4]^4 [3,4]^4 |
I5 | [1,2]^4 [2,3]^4 [3,4]^4 [4,5]^4 [1,5]^4 |
I6 | [1,2]^4 [2,3]^4 [3,4]^2 [3,5]^2 [4,5]^4 [4,6]^2 [5,6]^2 [1,6]^4 |
I7 | [1,2]^2 [1,3]^2 [2,3]^4 [2,4]^2 [3,5]^2 [4,5]^4 [4,6]^2 [5,6]^2 [6,7]^4 [1,7]^4 |
I8 | [1,2]^2 [1,3]^2 [2,3]^4 [2,4]^2 [3,5]^2 [4,5]^4 [4,6]^2 [5,6]^2 [6,7]^4 [7,8]^4 [1,8]^4 |
I9 | [1,2]^2 [1,3]^2 [2,3]^4 [2,4]^2 [3,5]^2 [4,5]^4 [4,6]^2 [5,6]^2 [6,7]^4 [7,8]^2 [7,9]^2 [8,9]^4 [1,8]^2 [1,9]^2 |
I10 | [1,2]^2 [1,3]^2 [2,3]^4 [2,4]^2 [3,5]^2 [4,5]^4 [4,6]^2 [5,6]^2 [6,7]^4 [7,8]^2 [7,9]^2 [8,9]^4 [8,10]^2 [9,10]^2 [1,10]^4 |
Cröni gives an incomplete list of degrees of basic invariants, missing only the largest degree. Here we give the full list of degrees and the invariants themselves. The degrees are 4 (2 times), 8 (5 times), 10 (5 times), 12 (14 times), 14 (17 times), 16 (21 times), 18 (25 times), 20 (2 times), 22 (once) for a total of 92 basic invariants. This settles a 130-year-old problem.
Poincaré series:
(1 + t4 + 5t8 + 4t10 + 17t12 +
20t14 + 47t16 + 61t18 + 97t20 +
120t22 + 165t24 + 189t26 + 223t28 +
241t30 + 254t32 + 254t34 + 241t36 +
223t38 + 189t40 + 165t42 + 120t44 +
97t46 + 61t48 + 47t50 + 20t52 +
17t54 + 4t56 + 5t58 + t62 +
t66) /
(1–t4)(1–t8)(1–t10)(1–t12)2(1–t14)(1–t16)
Numbers of basic invariants and covariants (the latter possibly incomplete):
d\o | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | # | cum | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | - | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 | 1 | |
2 | - | - | 1 | - | - | - | 1 | - | - | - | 1 | - | - | - | 1 | - | - | - | - | - | - | - | - | 4 | 5 | |
3 | - | - | - | 1 | - | 1 | - | 1 | - | 2 | - | 1 | - | 1 | - | 1 | - | 1 | - | - | - | 1 | - | 10 | 15 | |
4 | 2 | - | - | - | 2 | - | 2 | - | 3 | - | 2 | - | 2 | - | 2 | - | 1 | - | 1 | - | - | - | 1 | 18 | 33 | |
5 | - | 1 | - | 3 | - | 4 | - | 4 | - | 3 | - | 4 | - | 2 | - | 3 | - | - | - | 1 | - | - | - | 25 | 58 | |
6 | - | - | 4 | - | 4 | - | 6 | - | 6 | - | 3 | - | 4 | - | - | - | 1 | - | - | - | - | - | - | 28 | 86 | |
7 | - | 4 | - | 7 | - | 8 | - | 7 | - | 6 | - | 1 | - | 1 | - | - | - | - | - | - | - | - | - | 34 | 120 | |
8 | 5 | - | 8 | - | 10 | - | 10 | - | 4 | - | 2 | - | - | - | - | - | - | - | - | - | - | - | - | 39 | 159 | |
9 | - | 9 | - | 14 | - | 10 | - | 7 | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | 41 | 200 | |
10 | 5 | - | 15 | - | 15 | - | 3 | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 39 | 239 | |
11 | - | 17 | - | 16 | - | 7 | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 41 | 280 | |
12 | 14 | - | 23 | - | 4 | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 42 | 322 | |
13 | - | 25 | - | 10 | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 36 | 358 | |
14 | 17 | - | 13 | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 31 | 389 | |
15 | - | 26 | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 27 | 416 | |
16 | 21 | - | 3 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 24 | 440 | |
17 | - | 7 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 7 | 447 | |
18 | 25 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 25 | 472 | |
19 | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 | 473 | |
20 | 2 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 2 | 475 | |
21 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 475 | |
22 | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 | 476 |
(Partial results computed by Holger Cröni, Tom Hagedorn, aeb. Any further basic covariant has degree at least 25.)
Basic invariants in bracket form:
Name | Bracket monomial |
---|---|
I4a | [1,2]^8 [1,3] [2,4] [3,4]^8 = a^2j^2 – 18abij + 40achj + 32aci^2 – 56adgj – 112adhi + 28aefj + 224aegi – 140af^2i + 32b^2hj + 49b^2i^2 – 112bcgj – 536bchi + 224bdfj + 392bdgi + 896bdh^2 – 140be^2j – 196befi – 1792begh + 1120bf^2h + 896c^2gi + 400c^2h^2 – 1792cdfi – 4256cdgh + 1120ce^2i + 560cefh + 6272ceg^2 – 3920cf^2g + 6272d^2fh + 784d^2g^2 – 3920de^2h – 13328defg + 7840df^3 + 7840e^3g – 4704e^2f^2 |
I4b | [1,2]^5 [1,3]^4 [2,4]^4 [3,4]^5 |
I8a | [1,2]^5 [1,3]^4 [2,4]^4 [3,5]^5 [4,6]^5 [5,7]^4 [6,8]^4 [7,8]^5 |
I8b | [1,2]^3 [1,3]^6 [2,4]^6 [3,5]^3 [4,6]^3 [5,7]^6 [6,8]^6 [7,8]^3 |
I8c | [1,2]^6 [1,3]^3 [2,3]^2 [2,4] [3,4]^2 [3,5]^2 [4,5] [4,6]^5 [5,7]^5 [5,8] [6,8]^4 [7,8]^4 |
I8d | [1,2] [1,3]^8 [2,3] [2,4]^3 [2,5]^4 [4,5] [4,6]^5 [5,6] [5,7]^3 [6,8]^3 [7,8]^6 |
I8e | [1,2]^5 [1,3]^4 [2,3]^3 [2,4] [3,4]^2 [4,5]^2 [4,6]^2 [4,7]^2 [5,7]^6 [5,8] [6,8]^7 [7,8] |
I10a | [1,2]^6 [1,3] [1,4]^2 [2,4]^3 [3,4] [3,5]^2 [3,6]^4 [3,7] [4,7] [4,8]^2 [5,8]^7 [6,9]^5 [7,9] [7,10]^6 [9,10]^3 |
I10b | [1,2]^4 [1,3]^5 [2,3]^2 [2,4] [2,5]^2 [3,5]^2 [4,6]^5 [4,7]^3 [5,7] [5,8]^4 [6,9]^4 [7,9]^3 [7,10]^2 [8,10]^5 [9,10]^2 |
I10c | [1,2]^6 [1,3] [1,4]^2 [2,4]^3 [3,4]^3 [3,5] [3,6] [3,7]^3 [4,7] [5,7]^3 [5,8]^4 [5,9] [6,9]^7 [6,10] [7,10]^2 [8,10]^5 [9,10] |
I10d | [1,2]^4 [1,3]^3 [1,4]^2 [2,4]^5 [3,4]^2 [3,5] [3,6]^3 [5,6]^3 [5,7]^4 [5,8] [6,9]^3 [7,9]^5 [8,10]^8 [9,10] |
I10e | [1,2]^6 [1,3]^3 [2,3] [2,4]^2 [3,5]^2 [3,6]^3 [4,6]^2 [4,7]^5 [5,7]^4 [5,8]^3 [6,8]^2 [6,9]^2 [8,9] [8,10]^3 [9,10]^6 |
I12a | [1,2]^8 [1,3] [2,4] [3,5]^4 [3,6]^4 [4,6]^5 [4,7]^3 [5,7]^3 [5,8]^2 [7,8] [7,9]^2 [8,9] [8,10]^3 [8,11]^2 [9,11]^5 [9,12] [10,12]^6 [11,12]^2 |
I12b | [1,2]^8 [1,3] [2,4] [3,4]^2 [3,5]^4 [3,6]^2 [4,6]^5 [4,7] [5,7]^5 [6,8]^2 [7,9]^3 [8,9]^5 [8,10]^2 [9,10] [10,11]^3 [10,12]^3 [11,12]^6 |
I12c | [1,2] [1,3]^5 [1,4]^3 [2,4]^6 [2,5]^2 [3,5]^2 [3,6] [3,7] [5,7]^5 [6,8] [6,9]^3 [6,10]^4 [7,10]^2 [7,11] [8,11]^8 [9,12]^6 [10,12]^3 |
I12d | [1,2] [1,3]^3 [1,4]^5 [2,4] [2,5]^4 [2,6]^3 [3,6] [3,7]^5 [4,7]^2 [4,8] [5,8] [5,9]^3 [5,10] [6,10]^5 [7,10]^2 [8,10] [8,11]^6 [9,12]^6 [11,12]^3 |
I12e | [1,2]^3 [1,3]^6 [2,3] [2,4]^5 [3,4] [3,5] [4,5]^2 [4,6] [5,6]^2 [5,7]^4 [6,7]^4 [6,8]^2 [7,9] [8,9]^5 [8,10]^2 [9,11]^3 [10,11]^2 [10,12]^5 [11,12]^4 |
I12f | [1,2]^4 [1,3]^2 [1,4]^3 [2,4] [2,5]^2 [2,6]^2 [3,6]^4 [3,7] [3,8]^2 [4,8]^4 [4,9] [5,9]^6 [5,10] [6,10]^3 [7,10] [7,11]^7 [8,11] [8,12]^2 [9,12]^2 [10,12]^4 [11,12] |
I12g | [1,2]^3 [1,3]^4 [1,4]^2 [2,5]^6 [3,5]^2 [3,6]^2 [3,7] [4,7]^2 [4,8]^3 [4,9]^2 [5,9] [6,9]^5 [6,10]^2 [7,10]^5 [7,11] [8,11]^4 [8,12]^2 [9,12] [10,12]^2 [11,12]^4 |
I12h | [1,2] [1,3]^6 [1,4]^2 [2,4]^3 [2,5]^2 [2,6]^3 [3,6]^3 [4,6]^3 [4,7] [5,7] [5,8] [5,9]^5 [7,9]^4 [7,10]^3 [8,10]^6 [8,11] [8,12] [11,12]^8 |
I12i | [1,2]^8 [1,3] [2,3] [3,4]^5 [3,5]^2 [4,6]^3 [4,7] [5,7]^5 [5,8] [5,9] [6,9]^6 [7,10]^3 [8,10]^4 [8,11]^4 [9,12]^2 [10,12]^2 [11,12]^5 |
I12j | [1,2] [1,3] [1,4]^4 [1,5]^3 [2,5]^3 [2,6]^4 [2,7] [3,7]^3 [3,8]^5 [4,9]^5 [5,9] [5,10]^2 [6,10]^5 [7,10]^2 [7,11]^3 [8,11]^2 [8,12]^2 [9,12]^3 [11,12]^4 |
I12k | [1,2]^2 [1,3]^3 [1,4]^4 [2,4]^5 [2,5] [2,6] [3,6]^4 [3,7]^2 [5,7]^3 [5,8]^4 [5,9] [6,9]^4 [7,9]^3 [7,10] [8,10]^3 [8,11]^2 [9,11] [10,11] [10,12]^4 [11,12]^5 |
I12l | [1,2]^6 [1,3]^3 [2,3]^3 [3,4] [3,5]^2 [4,5]^5 [4,6]^3 [5,6]^2 [6,7]^4 [7,8]^5 [8,9]^2 [8,10]^2 [9,10]^2 [9,11]^5 [10,12]^5 [11,12]^4 |
I12m | [1,2]^8 [1,3] [2,3] [3,4] [3,5] [3,6]^5 [4,6]^3 [4,7]^5 [5,7]^2 [5,8]^3 [5,9]^3 [6,9] [7,9]^2 [8,10]^6 [9,11]^3 [10,12]^3 [11,12]^6 |
I12n | [1,2]^5 [1,3]^4 [2,3]^2 [2,4]^2 [3,4]^2 [3,5] [4,6]^5 [5,7]^5 [5,8]^2 [5,9] [6,9]^3 [6,10] [7,10]^3 [7,11] [8,11]^7 [9,11] [9,12]^4 [10,12]^5 |
I14a | [1,2]^3 [1,3]^2 [1,4] [1,5] [1,6]^2 [2,7]^5 [2,8] [3,8] [3,9]^4 [3,10]^2 [4,10]^7 [4,11] [5,11]^6 [5,12]^2 [6,12]^7 [7,13]^4 [8,13]^5 [8,14]^2 [9,14]^5 [11,14]^2 |
I14b | [1,2]^6 [1,3]^3 [2,3] [2,4]^2 [3,4]^3 [3,5]^2 [4,5]^3 [4,6] [5,6]^4 [6,7]^4 [7,8]^3 [7,9]^2 [8,9]^6 [9,10] [10,11]^4 [10,12]^4 [11,13]^5 [12,14]^5 [13,14]^4 |
I14c | [1,2]^2 [1,3]^5 [1,4]^2 [2,4]^3 [2,5] [2,6]^3 [3,6]^2 [3,7]^2 [4,8]^4 [5,8] [5,9]^3 [5,10]^4 [6,10]^2 [6,11]^2 [7,12]^7 [8,12]^2 [8,13]^2 [9,13]^6 [10,13] [10,14]^2 [11,14]^7 |
I14d | [1,2]^6 [1,3]^3 [2,4]^3 [3,4] [3,5] [3,6] [3,7]^3 [4,7]^5 [5,7] [5,8]^2 [5,9]^5 [6,9] [6,10]^4 [6,11]^3 [8,11]^6 [8,12] [9,12]^3 [10,12]^3 [10,13]^2 [12,14]^2 [13,14]^7 |
I14e | [1,2]^8 [1,3] [2,4] [3,4]^4 [3,5]^4 [4,5]^2 [4,6] [4,7] [5,8]^3 [6,8] [6,9]^7 [7,9]^2 [7,10]^4 [7,11]^2 [8,11]^4 [8,12] [10,13]^5 [11,13]^3 [12,14]^8 [13,14] |
I14f | [1,2]^2 [1,3]^4 [1,4]^3 [2,4]^2 [2,5]^3 [2,6]^2 [3,7] [3,8]^4 [4,8]^2 [4,9]^2 [5,9]^5 [5,10] [6,10]^7 [7,11]^8 [8,12]^3 [9,12]^2 [10,13] [11,13] [12,13] [12,14]^3 [13,14]^6 |
I14g | [1,2]^2 [1,3]^4 [1,4]^3 [2,4]^2 [2,5]^5 [3,5]^2 [3,6]^3 [4,6]^4 [5,6] [5,7] [6,7] [7,8]^3 [7,9]^4 [8,10]^6 [9,11]^5 [10,12]^3 [11,12]^4 [12,13] [12,14] [13,14]^8 |
I14h | [1,2]^6 [1,3]^2 [1,4] [2,4]^3 [3,4]^3 [3,5]^4 [4,5]^2 [5,6]^3 [6,7]^3 [6,8]^2 [6,9] [7,9]^6 [8,9]^2 [8,10]^5 [10,11]^2 [10,12]^2 [11,12]^4 [11,13]^3 [12,14]^3 [13,14]^6 |
I14i | [1,2]^3 [1,3]^6 [2,3]^3 [2,4] [2,5]^2 [4,5]^5 [4,6] [4,7]^2 [5,7]^2 [6,8]^5 [6,9]^3 [7,10]^4 [7,11] [8,11]^2 [8,12]^2 [9,12]^3 [9,13]^3 [10,13]^5 [11,13] [11,14]^5 [12,14]^4 |
I14j | [1,2]^7 [1,3]^2 [2,4]^2 [3,5]^7 [4,5] [4,6]^6 [5,6] [6,7]^2 [7,8]^2 [7,9]^5 [8,9] [8,10] [8,11] [8,12]^4 [9,12]^3 [10,13]^8 [11,13] [11,14]^7 [12,14]^2 |
I14k | [1,2]^5 [1,3]^4 [2,3]^3 [2,4] [3,4]^2 [4,5]^6 [5,6]^2 [5,7] [6,7]^2 [6,8]^5 [7,8]^2 [7,9]^4 [8,9]^2 [9,10]^2 [9,11] [10,11]^2 [10,12] [10,13]^4 [11,13]^5 [11,14] [12,14]^8 |
I14l | [1,2]^6 [1,3]^3 [2,3]^2 [2,4] [3,4]^2 [3,5]^2 [4,5]^2 [4,6]^4 [5,6]^4 [5,7] [6,7] [7,8]^4 [7,9]^3 [8,9]^3 [8,10]^2 [9,10]^3 [10,11]^2 [10,12]^2 [11,12]^6 [11,13] [12,14] [13,14]^8 |
I14m | [1,2]^3 [1,3]^2 [1,4]^4 [2,5]^6 [3,5]^3 [3,6]^4 [4,7]^5 [6,7] [6,8]^4 [7,8] [7,9]^2 [8,9]^4 [9,10]^2 [9,11] [10,11] [10,12]^6 [11,13]^5 [11,14]^2 [12,14]^3 [13,14]^4 |
I14n | [1,2]^5 [1,3]^4 [2,4]^4 [3,5]^5 [4,5] [4,6]^4 [5,6] [5,7]^2 [6,7] [6,8]^3 [7,8]^4 [7,9]^2 [8,10]^2 [9,10] [9,11]^6 [10,11] [10,12]^5 [11,13]^2 [12,13] [12,14]^3 [13,14]^6 |
I14o | [1,2]^8 [1,3] [2,4] [3,4]^2 [3,5] [3,6]^5 [4,7]^4 [4,8] [4,9] [5,9]^5 [5,10]^3 [6,10]^4 [7,10] [7,11] [7,12]^3 [8,12]^4 [8,13]^4 [9,13]^3 [10,13] [11,13] [11,14]^7 [12,14]^2 |
I14p | [1,2]^2 [1,3]^4 [1,4]^2 [1,5] [2,5]^2 [2,6]^3 [2,7]^2 [3,7]^5 [4,7] [4,8]^3 [4,9]^3 [5,9]^6 [6,10]^6 [7,10] [8,10]^2 [8,11]^2 [8,12]^2 [11,12]^5 [11,13]^2 [12,14]^2 [13,14]^7 |
I14q | [1,2]^5 [1,3] [1,4]^3 [2,4]^4 [3,4]^2 [3,5] [3,6] [3,7]^4 [5,7]^2 [5,8]^3 [5,9]^3 [6,9]^5 [6,10]^3 [7,11] [7,12]^2 [8,12]^6 [9,13] [10,13]^6 [11,13] [11,14]^7 [12,14] [13,14] |
I16a | [1,2]^6 [1,3]^2 [1,4] [2,4]^3 [3,4]^2 [3,5]^5 [4,6]^3 [5,7]^3 [5,8] [6,9]^6 [7,10]^6 [8,10]^2 [8,11]^6 [9,12]^3 [10,13] [11,14]^3 [12,14] [12,15]^5 [13,15]^4 [13,16]^4 [14,16]^5 |
I16b | [1,2]^7 [1,3]^2 [2,3] [2,4] [3,4]^4 [3,5]^2 [4,5] [4,6]^3 [5,6]^4 [5,7] [5,8] [6,8]^2 [7,8]^5 [7,9]^3 [8,10] [9,10] [9,11]^5 [10,11]^2 [10,12]^3 [10,13]^2 [11,14]^2 [12,14] [12,15]^5 [13,15]^4 [13,16]^3 [14,16]^6 |
I16c | [1,2] [1,3]^2 [1,4]^5 [1,5] [2,5]^6 [2,6]^2 [3,6]^6 [3,7] [4,7] [4,8]^3 [5,8]^2 [6,8] [7,8]^3 [7,9]^4 [9,10] [9,11] [9,12]^3 [10,12]^3 [10,13]^5 [11,14]^8 [12,14] [12,15]^2 [13,15] [13,16]^3 [15,16]^6 |
I16d | [1,2]^4 [1,3]^5 [2,3]^3 [2,4]^2 [3,5] [4,5]^2 [4,6]^5 [5,6]^3 [5,7]^3 [6,8] [7,8]^6 [8,9] [8,10] [9,10]^5 [9,11] [9,12]^2 [10,12] [10,13] [10,14] [11,14]^6 [11,15]^2 [12,15]^6 [13,15] [13,16]^7 [14,16]^2 |
I16e | [1,2] [1,3]^7 [1,4] [2,4]^3 [2,5]^3 [2,6]^2 [3,6]^2 [4,6]^4 [4,7] [5,7]^6 [6,8] [7,8] [7,9] [8,10]^4 [8,11]^3 [9,11]^6 [9,12] [9,13] [10,14]^5 [12,14] [12,15]^7 [13,15]^2 [13,16]^6 [14,16]^3 |
I16f | [1,2]^3 [1,3]^6 [2,4]^3 [2,5]^3 [3,5]^3 [4,6] [4,7]^3 [4,8]^2 [5,8] [5,9]^2 [6,9] [6,10]^6 [6,11] [7,11]^6 [8,11] [8,12] [8,13]^4 [9,13]^4 [9,14]^2 [10,14]^3 [11,14] [12,14]^3 [12,15]^3 [12,16]^2 [13,16] [15,16]^6 |
I16g | [1,2]^5 [1,3]^4 [2,3]^3 [2,4] [3,4] [3,5] [4,5]^5 [4,6]^2 [5,7]^3 [6,7] [6,8]^4 [6,9]^2 [7,9]^5 [8,10]^2 [8,11]^3 [9,11] [9,12] [10,12]^4 [10,13]^3 [11,13]^4 [11,14] [12,15]^4 [13,15]^2 [14,15] [14,16]^7 [15,16]^2 |
I16h | [1,2] [1,3]^7 [1,4] [2,4]^6 [2,5]^2 [3,5]^2 [4,5]^2 [5,6] [5,7]^2 [6,7]^3 [6,8]^5 [7,8]^2 [7,9]^2 [8,10]^2 [9,10]^3 [9,11]^4 [10,11]^2 [10,12]^2 [11,12] [11,13] [11,14] [12,14]^2 [12,15]^4 [13,15]^5 [13,16]^3 [14,16]^6 |
I16i | [1,2]^6 [1,3]^3 [2,4]^2 [2,5] [3,5]^2 [3,6]^4 [4,6] [4,7]^6 [5,8]^3 [5,9]^3 [6,9]^2 [6,10]^2 [7,10]^3 [8,10]^3 [8,11]^3 [9,11] [9,12]^3 [10,12] [11,12] [11,13]^4 [12,13]^2 [12,14]^2 [13,14]^2 [13,15] [14,15]^2 [14,16]^3 [15,16]^6 |
I16j | [1,2]^8 [1,3] [2,4] [3,4] [3,5]^2 [3,6]^4 [3,7] [4,7]^7 [5,7] [5,8]^6 [6,8]^2 [6,9]^3 [8,9] [9,10] [9,11]^3 [9,12] [10,12]^5 [10,13]^2 [10,14] [11,14]^3 [11,15]^3 [12,15]^3 [13,15]^3 [13,16]^4 [14,16]^5 |
I16k | [1,2]^8 [1,3] [2,4] [3,4]^3 [3,5]^4 [3,6] [4,7]^5 [5,8]^5 [6,8]^4 [6,9]^3 [6,10] [7,10] [7,11] [7,12] [7,13] [9,13]^5 [9,14] [10,14]^7 [11,14] [11,15]^7 [12,15]^2 [12,16]^6 [13,16]^3 |
I16l | [1,2]^5 [1,3]^2 [1,4]^2 [2,4]^3 [2,5] [3,6]^7 [4,7]^4 [5,7]^5 [5,8]^2 [5,9] [6,9] [6,10] [8,10]^2 [8,11]^3 [8,12]^2 [9,12]^2 [9,13]^5 [10,13]^2 [10,14]^4 [11,14]^3 [11,15]^3 [12,15]^3 [12,16]^2 [13,16]^2 [14,16]^2 [15,16]^3 |
I16m | [1,2]^3 [1,3]^6 [2,3]^2 [2,4] [2,5]^3 [3,5] [4,5]^2 [4,6]^6 [5,6] [5,7]^2 [6,7]^2 [7,8]^5 [8,9]^3 [8,10] [9,10]^2 [9,11]^4 [10,12]^4 [10,13]^2 [11,13]^3 [11,14]^2 [12,14]^5 [13,15]^3 [13,16] [14,16]^2 [15,16]^6 |
I16n | [1,2]^6 [1,3]^3 [2,3] [2,4]^2 [3,5]^5 [4,5]^4 [4,6] [4,7]^2 [6,7]^7 [6,8] [8,9]^8 [9,10] [10,11]^6 [10,12]^2 [11,13]^3 [12,13]^5 [12,14]^2 [13,15] [14,15]^3 [14,16]^4 [15,16]^5 |
I16o | [1,2]^2 [1,3]^4 [1,4]^2 [1,5] [2,5]^7 [3,5] [3,6] [3,7]^3 [4,7]^5 [4,8]^2 [6,8]^3 [6,9]^4 [6,10] [7,10] [8,10]^4 [9,11]^2 [9,12] [9,13]^2 [10,13]^3 [11,13]^2 [11,14]^3 [11,15]^2 [12,15]^7 [12,16] [13,16]^2 [14,16]^6 |
I16p | [1,2]^4 [1,3]^5 [2,4] [2,5]^2 [2,6]^2 [3,6]^2 [3,7]^2 [4,7]^5 [4,8]^3 [5,8]^2 [5,9]^5 [6,9]^3 [6,10]^2 [7,10]^2 [8,10]^4 [9,11] [10,12] [11,12]^6 [11,13]^2 [12,13]^2 [13,14]^4 [13,15] [14,15]^2 [14,16]^3 [15,16]^6 |
I16q | [1,2]^8 [1,3] [2,4] [3,4]^2 [3,5]^4 [3,6]^2 [4,6]^3 [4,7]^3 [5,7]^5 [6,8]^2 [6,9]^2 [7,9] [8,10]^6 [8,11] [9,11]^6 [10,12]^3 [11,12]^2 [12,13]^3 [12,14] [13,14]^4 [13,15]^2 [14,15] [14,16]^3 [15,16]^6 |
I16r | [1,2]^4 [1,3]^5 [2,3] [2,4] [2,5]^3 [3,5]^3 [4,6]^4 [4,7]^2 [4,8]^2 [5,8]^3 [6,8]^3 [6,9]^2 [7,9]^2 [7,10]^4 [7,11] [8,11] [9,11]^2 [9,12]^3 [10,12]^4 [10,13] [11,13]^3 [11,14]^2 [12,14]^2 [13,15]^5 [14,16]^5 [15,16]^4 |
I16s | [1,2] [1,3]^8 [2,3] [2,4]^4 [2,5]^3 [4,5] [4,6] [4,7]^3 [5,7] [5,8]^2 [5,9] [5,10] [6,10]^7 [6,11] [7,11]^4 [7,12] [8,13]^5 [8,14]^2 [9,14]^7 [9,15] [10,15] [11,15]^4 [12,15]^3 [12,16]^5 [13,16]^4 |
I16t | [1,2]^6 [1,3]^3 [2,3] [2,4]^2 [3,4]^3 [3,5]^2 [4,5]^2 [4,6]^2 [5,7]^5 [6,7]^4 [6,8] [6,9]^2 [8,9]^7 [8,10] [10,11]^6 [10,12]^2 [11,12] [11,13]^2 [12,13] [12,14]^5 [13,15]^5 [13,16] [14,16]^4 [15,16]^4 |
I16u | [1,2]^6 [1,3] [1,4]^2 [2,4]^3 [3,4] [3,5]^7 [4,5] [4,6]^2 [5,6] [6,7]^3 [6,8] [6,9]^2 [7,9]^6 [8,9] [8,10]^3 [8,11] [8,12]^3 [10,12] [10,13] [10,14]^4 [11,14]^4 [11,15]^4 [12,15]^5 [13,16]^8 [14,16] |
I18a | [1,2]^3 [1,3] [1,4]^5 [2,5]^6 [3,5]^2 [3,6]^6 [4,6]^2 [4,7]^2 [5,7] [6,8] [7,8]^5 [7,9] [8,9]^3 [9,10]^3 [9,11]^2 [10,12]^6 [11,13]^5 [11,14]^2 [12,14]^3 [13,14] [13,15]^3 [14,16]^3 [15,16]^5 [15,17] [16,18] [17,18]^8 |
I18b | [1,2]^3 [1,3]^6 [2,3]^3 [2,4]^3 [4,5]^2 [4,6] [4,7]^3 [5,7]^2 [5,8] [5,9]^4 [6,9] [6,10]^5 [6,11]^2 [7,11]^3 [7,12] [8,12]^5 [8,13]^3 [9,13]^3 [9,14] [10,15]^3 [10,16] [11,16]^4 [12,16]^3 [13,17]^3 [14,17]^6 [14,18]^2 [15,18]^6 [16,18] |
I18c | [1,2]^5 [1,3]^3 [1,4] [2,4]^2 [2,5]^2 [3,5]^3 [3,6]^3 [4,7]^6 [5,7]^3 [5,8] [6,8]^5 [6,9] [8,9]^3 [9,10]^4 [9,11] [10,11] [10,12]^4 [11,12]^5 [11,13]^2 [13,14]^5 [13,15] [13,16] [14,16]^4 [15,16]^3 [15,17]^3 [15,18]^2 [16,18] [17,18]^6 |
I18d | [1,2]^8 [1,3] [2,4] [3,4]^5 [3,5]^3 [4,5] [4,6]^2 [5,6]^3 [5,7]^2 [6,7] [6,8]^3 [7,9]^6 [8,9] [8,10]^2 [8,11]^3 [9,11]^2 [10,11]^4 [10,12] [10,13]^2 [12,14]^5 [12,15]^3 [13,15]^6 [13,16] [14,16] [14,17]^3 [16,17]^2 [16,18]^5 [17,18]^4 |
I18e | [1,2] [1,3]^6 [1,4]^2 [2,4]^5 [2,5]^2 [2,6] [3,6] [3,7]^2 [4,8] [4,9] [5,9]^7 [6,9] [6,10]^3 [6,11]^3 [7,11]^3 [7,12]^3 [7,13] [8,13]^8 [10,14]^6 [11,14]^2 [11,15] [12,15]^3 [12,16] [12,17]^2 [14,17] [15,17]^5 [16,18]^8 [17,18] |
I18f | [1,2]^5 [1,3]^4 [2,3]^3 [2,4] [3,4]^2 [4,5]^6 [5,6]^2 [5,7] [6,7] [6,8]^6 [7,8]^3 [7,9]^4 [9,10]^2 [9,11]^3 [10,11]^3 [10,12]^2 [10,13]^2 [11,13]^3 [12,13]^3 [12,14]^2 [12,15]^2 [13,15] [14,15]^2 [14,16]^4 [14,17] [15,17]^4 [16,18]^5 [17,18]^4 |
I18g | [1,2] [1,3]^3 [1,4]^5 [2,4]^2 [2,5]^6 [3,5]^3 [3,6]^3 [4,6] [4,7] [6,7]^2 [6,8]^3 [7,8]^2 [7,9] [7,10] [7,11]^2 [8,11]^4 [9,11]^2 [9,12]^6 [10,12] [10,13]^2 [10,14]^5 [11,15] [12,15]^2 [13,15]^4 [13,16]^3 [14,16] [14,17]^3 [15,17]^2 [16,18]^5 [17,18]^4 |
I18h | [1,2] [1,3]^8 [2,4]^6 [2,5]^2 [3,5] [4,5]^3 [5,6]^3 [6,7]^3 [6,8]^3 [7,8] [7,9]^2 [7,10]^2 [7,11] [8,11]^5 [9,11]^3 [9,12]^2 [9,13]^2 [10,13]^6 [10,14] [12,14]^5 [12,15]^2 [13,15] [14,15]^3 [15,16]^3 [16,17]^3 [16,18]^3 [17,18]^6 |
I18i | [1,2]^3 [1,3]^5 [1,4] [2,4] [2,5]^5 [3,5] [3,6]^2 [3,7] [4,7]^3 [4,8] [4,9]^3 [5,9]^3 [6,9]^3 [6,10]^4 [7,10] [7,11]^4 [8,11]^2 [8,12]^6 [10,12]^2 [10,13]^2 [11,14] [11,15]^2 [12,15] [13,15] [13,16]^5 [13,17] [14,17]^8 [15,18]^5 [16,18]^4 |
I18j | [1,2]^5 [1,3]^3 [1,4] [2,4]^4 [3,4]^3 [3,5]^3 [4,5] [5,6] [5,7]^2 [5,8] [5,9] [6,9]^6 [6,10]^2 [7,10]^2 [7,11]^5 [8,12]^7 [8,13] [9,13]^2 [10,13]^5 [11,13] [11,14]^3 [12,15]^2 [14,15] [14,16] [14,17]^4 [15,17]^5 [15,18] [16,18]^8 |
I18k | [1,2]^8 [1,3] [2,4] [3,4]^4 [3,5]^4 [4,6]^4 [5,6]^2 [5,7]^3 [6,7]^3 [7,8] [7,9]^2 [8,9]^5 [8,10]^3 [9,10] [9,11] [10,11]^5 [11,12] [11,13]^2 [12,13]^4 [12,14]^4 [13,14]^2 [13,15] [14,15] [14,16]^2 [15,16]^5 [15,17]^2 [16,18]^2 [17,18]^7 |
I18l | [1,2]^8 [1,3] [2,4] [3,4]^3 [3,5]^2 [3,6]^3 [4,6] [4,7]^4 [5,7]^5 [5,8] [5,9] [6,9]^5 [8,9]^2 [8,10]^2 [8,11]^4 [9,11] [10,11]^2 [10,12]^4 [10,13] [11,13]^2 [12,13] [12,14]^4 [13,14]^3 [13,15]^2 [14,15]^2 [15,16]^3 [15,17]^2 [16,17]^2 [16,18]^4 [17,18]^5 |
I18m | [1,2]^5 [1,3]^4 [2,3]^3 [2,4] [3,5]^2 [4,5]^6 [4,6]^2 [5,6] [6,7]^2 [6,8] [6,9]^3 [7,9]^2 [7,10]^3 [7,11]^2 [8,11]^2 [8,12]^4 [8,13]^2 [9,13]^4 [10,13] [10,14]^5 [11,14]^4 [11,15] [12,15]^5 [13,16]^2 [15,17]^3 [16,17]^2 [16,18]^5 [17,18]^4 |
I18n | [1,2] [1,3]^6 [1,4]^2 [2,4]^6 [2,5]^2 [3,6]^3 [4,7] [5,7]^3 [5,8]^3 [5,9] [6,9]^3 [6,10]^3 [7,10]^4 [7,11] [8,11]^3 [8,12]^3 [9,13]^2 [9,14]^3 [10,14] [10,15] [11,15]^5 [12,15] [12,16]^5 [13,17]^7 [14,17]^2 [14,18]^3 [15,18]^2 [16,18]^4 |
I18o | [1,2]^3 [1,3]^6 [2,3]^2 [2,4]^4 [3,4] [4,5]^3 [4,6] [5,6]^2 [5,7]^4 [6,8]^2 [6,9] [6,10]^2 [6,11] [7,11]^5 [8,11]^2 [8,12] [8,13]^4 [9,13]^3 [9,14]^5 [10,15]^3 [10,16]^4 [11,16] [12,16]^3 [12,17]^5 [13,17]^2 [14,17]^2 [14,18]^2 [15,18]^6 [16,18] |
I18p | [1,2]^8 [1,3] [2,3] [3,4]^2 [3,5] [3,6] [3,7]^3 [4,7]^6 [4,8] [5,8]^2 [5,9] [5,10]^5 [6,11]^8 [8,11] [8,12]^5 [9,12] [9,13]^2 [9,14]^5 [10,14] [10,15]^3 [12,16]^3 [13,16]^2 [13,17]^5 [14,17]^3 [15,17] [15,18]^5 [16,18]^4 |
I18q | [1,2]^5 [1,3]^2 [1,4]^2 [2,4]^4 [3,4]^3 [3,5] [3,6]^3 [5,6]^2 [5,7]^2 [5,8]^2 [5,9]^2 [6,9]^3 [6,10] [7,11]^7 [8,11] [8,12]^4 [8,13]^2 [9,13]^4 [10,13]^3 [10,14]^2 [10,15]^2 [10,16] [11,16] [12,16]^4 [12,17] [14,17]^7 [15,17] [15,18]^6 [16,18]^3 |
I18r | [1,2]^6 [1,3] [1,4]^2 [2,4]^3 [3,4]^4 [3,5]^3 [3,6] [5,6]^4 [5,7]^2 [6,7]^3 [6,8] [7,8]^4 [8,9]^2 [8,10]^2 [9,10] [9,11]^6 [10,11]^3 [10,12] [10,13]^2 [12,13]^3 [12,14]^5 [13,15]^4 [14,16]^4 [15,17]^5 [16,18]^5 [17,18]^4 |
I18s | [1,2]^4 [1,3]^2 [1,4]^3 [2,4]^5 [3,5]^7 [4,6] [5,7]^2 [6,7]^7 [6,8] [8,9]^3 [8,10]^5 [9,10]^4 [9,11] [9,12] [11,12]^2 [11,13]^2 [11,14]^4 [12,14]^5 [12,15] [13,16]^7 [15,16]^2 [15,17]^3 [15,18]^3 [17,18]^6 |
I18t | [1,2]^8 [1,3] [2,3] [3,4]^2 [3,5]^4 [3,6] [4,6]^6 [4,7] [5,7]^5 [6,8]^2 [7,8] [7,9]^2 [8,9]^3 [8,10]^3 [9,10]^4 [10,11]^2 [11,12]^2 [11,13]^5 [12,13] [12,14]^6 [13,15]^3 [14,15]^3 [15,16]^3 [16,17]^3 [16,18]^3 [17,18]^6 |
I18u | [1,2]^6 [1,3]^3 [2,3]^3 [3,4]^3 [4,5]^4 [4,6]^2 [5,6]^2 [5,7]^3 [6,7] [6,8]^4 [7,9]^4 [7,10] [8,11]^5 [9,12] [9,13]^4 [10,13]^5 [10,14]^3 [11,14]^4 [12,14] [12,15] [12,16]^6 [14,16] [15,16] [15,17]^4 [15,18]^3 [16,18] [17,18]^5 |
I18v | [1,2]^6 [1,3] [1,4]^2 [2,4] [2,5]^2 [3,5]^6 [3,6]^2 [4,7]^5 [4,8] [5,8] [6,8] [6,9]^2 [6,10]^4 [7,10]^3 [7,11] [8,11]^4 [8,12]^2 [9,12]^4 [9,13]^3 [10,14] [10,15] [11,15]^4 [12,15] [12,16]^2 [13,16]^3 [13,17]^3 [14,17]^6 [14,18]^2 [15,18]^3 [16,18]^4 |
I18w | [1,2] [1,3]^6 [1,4]^2 [2,4]^6 [2,5]^2 [3,5]^3 [4,6] [5,6]^2 [5,7]^2 [6,7] [6,8] [6,9]^4 [7,9]^2 [7,10]^4 [8,10] [8,11]^5 [8,12]^2 [9,12]^3 [10,12]^4 [11,13]^2 [11,14]^2 [13,14]^2 [13,15]^3 [13,16]^2 [14,17]^5 [15,17]^4 [15,18]^2 [16,18]^7 |
I18x | [1,2]^4 [1,3]^5 [2,3] [2,4]^4 [3,5]^3 [4,5]^2 [4,6]^3 [5,6]^2 [5,7] [5,8] [6,8]^4 [7,8]^3 [7,9]^3 [7,10]^2 [8,10] [9,10]^3 [9,11]^3 [10,11] [10,12]^2 [11,12] [11,13]^2 [11,14]^2 [12,15]^6 [13,15]^2 [13,16]^5 [14,16]^2 [14,17]^4 [14,18] [15,18] [16,18]^2 [17,18]^5 |
I18y | [1,2]^3 [1,3]^6 [2,3]^3 [2,4]^2 [2,5] [4,6]^4 [4,7]^3 [5,7]^2 [5,8]^4 [5,9]^2 [6,9]^2 [6,10]^3 [7,10]^3 [7,11] [8,11]^5 [9,11] [9,12]^2 [9,13]^2 [10,13]^3 [11,13]^2 [12,13] [12,14] [12,15]^5 [13,15] [14,16]^8 [15,16] [15,17] [15,18] [17,18]^8 |
I20a | [1,2]^2 [1,3]^2 [1,4]^4 [1,5] [2,5]^3 [2,6]^4 [3,6]^4 [3,7]^3 [4,7]^5 [5,8] [5,9]^4 [6,10] [7,10] [8,10]^3 [8,11]^5 [9,12]^5 [10,13]^4 [11,13]^2 [11,14] [11,15] [12,15]^3 [12,16] [13,16]^2 [13,17] [14,17]^6 [14,18]^2 [15,18] [15,19]^4 [16,19]^5 [16,20] [17,20]^2 [18,20]^6 |
I20b | [1,2]^3 [1,3] [1,4]^5 [2,4]^2 [2,5] [2,6]^3 [3,6]^6 [3,7]^2 [4,7]^2 [5,7]^4 [5,8]^4 [7,8] [8,9]^2 [8,10]^2 [9,11]^7 [10,11] [10,12] [10,13]^5 [11,13] [12,13]^3 [12,14]^5 [14,15] [14,16]^3 [15,16]^2 [15,17]^6 [16,17]^2 [16,18] [16,19] [17,19] [18,19]^3 [18,20]^5 [19,20]^4 |
I22 | [1,2]^2 [1,3]^6 [1,4] [2,4]^5 [2,5]^2 [3,5]^3 [4,5]^2 [4,6] [5,6]^2 [6,7]^4 [6,8]^2 [7,8] [7,9] [7,10]^2 [7,11] [8,11]^6 [9,11]^2 [9,12]^6 [10,13]^7 [12,14]^3 [13,14] [13,15] [14,15] [14,16]^4 [15,17]^7 [16,18]^3 [16,19]^2 [17,19]^2 [18,20]^6 [19,20]^3 [19,21] [19,22] [21,22]^8 |
(This list agrees with Sylvester for degrees less than 17. Sylvester predicted 3 basic invariants of degree 17 and none of degree higher than 17 for a total of 99 basic invariants. Olver (p. 40) reports 104 invariants. The existence of basic invariants of degree 21 seems to be new. That the list is complete follows from the result by aeb & M. Popoviciu that there is a hsop with degrees 2, 4, 6, 6, 8, 9, 10, 14.)
Numbers of basic invariants and covariants (the latter possibly incomplete):
d\o | 0 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | 26 | # | cum | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | 1 | - | - | - | - | - | - | - | - | 1 | 1 | |
2 | 1 | - | 1 | - | 1 | - | 1 | - | 1 | - | - | - | - | - | 5 | 6 | |
3 | - | 1 | - | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | - | 1 | - | 12 | 18 | |
4 | 1 | - | 3 | 1 | 3 | 3 | 2 | 3 | 1 | 2 | 1 | 1 | - | 1 | 22 | 40 | |
5 | - | 3 | 3 | 4 | 5 | 4 | 5 | 2 | 4 | - | 2 | - | - | - | 32 | 72 | |
6 | 4 | 2 | 5 | 8 | 6 | 8 | 2 | 4 | - | 1 | - | - | - | - | 40 | 112 | |
7 | - | 7 | 10 | 8 | 12 | 2 | 4 | - | 1 | - | - | - | - | - | 44 | 156 | |
8 | 5 | 8 | 11 | 15 | 4 | 7 | - | 1 | - | - | - | - | - | - | 51 | 207 | |
9 | 5 | 13 | 19 | 8 | 7 | - | 1 | - | - | - | - | - | - | - | 53 | 260 | |
10 | 8 | 20 | 13 | 13 | - | 1 | - | - | - | - | - | - | - | - | 55 | 315 | |
11 | 8 | 18 | 21 | - | 1 | - | - | - | - | - | - | - | - | - | 48 | 363 | |
12 | 12 | 30 | 1 | 2 | - | - | - | - | - | - | - | - | - | - | 45 | 408 | |
13 | 15 | 16 | 2 | - | - | - | - | - | - | - | - | - | - | - | 33 | 441 | |
14 | 13 | 17 | - | - | - | - | - | - | - | - | - | - | - | - | 30 | 471 | |
15 | 19 | - | 1 | - | - | - | - | - | - | - | - | - | - | - | 20 | 491 | |
16 | 5 | 3 | - | - | - | - | - | - | - | - | - | - | - | - | 8 | 499 | |
17 | 5 | - | - | - | - | - | - | - | - | - | - | - | - | - | 5 | 504 | |
18 | 1 | 1 | - | - | - | - | - | - | - | - | - | - | - | - | 2 | 506 | |
19 | 2 | - | - | - | - | - | - | - | - | - | - | - | - | - | 2 | 508 | |
20 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 508 | |
21 | 2 | - | - | - | - | - | - | - | - | - | - | - | - | - | 2 | 510 |
(Partial results computed by Tom Hagedorn, aeb.)
(This list agrees with Sylvester for degrees less than 15. Sylvester predicted none of degree higher than 14 for a total of 109 basic invariants.)
Numbers of basic invariants and covariants (possibly incomplete):
d\o | 0 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 30 | 32 | 34 | # | cum | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - | 1 | 1 | |
2 | 1 | - | 1 | - | 1 | - | 1 | - | 1 | - | 1 | - | - | - | - | - | - | - | 6 | 7 | |
3 | 1 | - | 1 | 1 | 2 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | - | 1 | - | - | 18 | 25 | |
4 | 2 | - | 3 | 2 | 4 | 3 | 4 | 4 | 3 | 4 | 2 | 3 | 1 | 2 | 1 | 1 | - | 1 | 40 | 65 | |
5 | 2 | 2 | 5 | 6 | 7 | 8 | 6 | 9 | 5 | 6 | 3 | 5 | 1 | 2 | - | 1 | - | - | 68 | 133 | |
6 | 4 | 4 | 9 | 11 | 12 | 14 | 10 | 12 | 3 | 6 | 1 | 1 | - | - | - | - | - | - | 87 | 220 | |
7 | 5 | 10 | 15 | 20 | 18 | 21 | 9 | 9 | 1 | 1 | - | - | - | - | - | - | - | - | 109 | 329 | |
8 | 7 | 16 | 24 | 29 | 21 | 21 | 1 | 1 | 1 | - | - | - | - | - | - | - | - | - | 121 | 450 | |
9 | 9 | 28 | 33 | 37 | 15 | 1 | 1 | 1 | - | - | - | - | - | - | - | - | - | - | 125 | 575 | |
10 | 14 | 39 | 41 | 30 | 1 | 1 | 1 | - | - | - | - | - | - | - | - | - | - | - | 127 | 702 | |
11 | 15 | 53 | 40 | 2 | 1 | 1 | - | - | - | - | - | - | - | - | - | - | - | - | 112 | 814 | |
12 | 19 | 56 | 8 | 1 | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | 85 | 899 | |
13 | 18 | 44 | 2 | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 65 | 964 | |
14 | 12 | 5 | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 18 | 982 | |
15 | 2 | 2 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 4 | 986 | |
16 | 1 | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 2 | 988 | |
17 | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 | 989 |
Leonid Bedratyuk, A complete minimal system of covariants for the binary form of degree 7, J. Symb. Comput. 44 (2009) 211-220.
Leonid Bedratyuk, On complete system of covariants for the binary form of degree 8, arXiv 0612113v1 (2006).
A. E. Brouwer & M. Popoviciu, The invariants of the binary nonic, J. Symb. Comput. 45 (2010) 709-720.
A. E. Brouwer & M. Popoviciu, The invariants of the binary decimic, J. Symb. Comput. 45 (2010) 837-843.
Holger Cröni, Zur Berechnung von Kovarianten von Quantiken, Dissertation, Univ. des Saarlandes, Saarbrücken, 2002.
Jacques Dixmier, Quelques résultats et conjectures concernant les séries de Poincaré des invariants de formes binaires, pp. 127-160 in: Séminaire d'algèbre Paul Dubreil et Marie-Paule Malliavin (1983-1984), Springer LNM 1146, 1985.
J. Dixmier & D. Lazard, Le nombre minimum d'invariants fondamentaux pour les formes binaires de degré 7, Portug. Math. 43 (1986) 377-392. Also J. Symb. Comput. 6 (1988) 113-115.
F. von Gall, Das vollständige Formensystem der binären Form 7ter Ordnung, Math. Ann. 31 (1888) 318-336.
F. von Gall, Das vollständige Formensystem einer binären Form achter Ordnung, Math. Ann. 17 (1880) 31-51, 139-152, 456.
P. Gordan, Beweis, dass jede Covariante und Invariante einer binären Form eine ganze Funktion mit numerischen Coeffizienten einer endlichen Anzahl solcher Formen ist, Journ. f. Math. 69 (1868) 323-354.
J. H. Grace & A. Young, The algebra of invariants, Cambridge, 1903.
J. Hammond, A simple proof of the existence of irreducible invariants of degrees 20 and 30 for the binary seventhic, Math. Ann. 36 (1890) 255-261.
Joseph P. S. Kung & Gian-Carlo Rota, The Invariant Theory of Binary Forms, Bull. Amer. Math. Soc. 10 (1984) 27-85.
P. Olver, Classical Invariant Theory, LMS Student Texts 44, Cambridge, 1999.
Issai Schur, Vorlesungen über Invariantentheorie, Springer, 1968.
T. Shioda, On the graded ring of invariants of binary octavics, Amer. J. Math. 89 (1967) 1022-1046.
J. J. Sylvester & F. Franklin, Tables of generating functions and groundforms for the binary quantics of the first ten orders, Amer. J. Math. 2 (1879) 223-251.
J. J. Sylvester & F. Franklin, Tables of the generating functions and groundforms for the binary duodecimic, with some general remarks, and tables of the irreducible syzygies of certain quantics, Amer. J. Math. 4 (1881) 41-61.