Andries E. Brouwer publications

Mathematical publications extracted from Math. Reviews (207, subscription required), Zentralblatt (255), Google Scholar (300+), and Narcis (200+). There is also the unreliable Microsoft Academic Search (250+).
  1. A. E. Brouwer, On a property of tree-like spaces, Rapport nr. 19, Wiskundig Seminarium der Vrije Universiteit, Amsterdam, Nov. 1970 - 19 pp.
  2. A. E. Brouwer & H. Kok, On some properties of orderable connected spaces, Rapport nr. 21, Wiskundig Seminarium der Vrije Universiteit, Amsterdam, June 1971 - 56 pp.
  3. A. E. Brouwer, On connected spaces in which each connected subset has at most one endpoint, Rapport nr. 22, Wiskundig Seminarium der Vrije Universiteit, Amsterdam, Feb. 1971 - 21 pp.
  4. A. E. Brouwer & J. van Dalen, The normality of the product of a finite number of locally compact ordered spaces, Rapport nr. 23, Wiskundig Seminarium der Vrije Universiteit, Amsterdam, May 1971 - 18 pp.
  5. A. E. Brouwer, On the topological characterization of the real line, Math. Centrum, Amsterdam, Afd. Zuivere Wisk., Report ZW 8/71, 6 pp. Zbl 0224.54059
  6. A. E. Brouwer, A characterization of connected (weakly) orderable spaces, MC Report ZW10/71, 7 p. (1971). Zbl 0239.54021
  7. A. E. Brouwer & A. Verbeek, Counting families of mutually intersecting sets, MC Report ZN 41/72, Mar 1972, 6pp.
    Gives a(1)..a(7) of A001206 (namely, 1, 2, 4, 12, 81, 2646, 1422564) and some related counts. The value of a(8) (namely, 229809982112) was determined by C. F. Mills & W. M. Mills, The calculation of λ(8), preprint, 1979. The value a(9) = 423295099074735261880 was found by aeb, Aug 2012.
  8. A. E. Brouwer, Two number theoretic sums, MC Report ZW 19/74, 1974. ii+3 pp. MR0345918 (49 #10647), Zbl 0274.10042
  9. A. E. Brouwer & A. Schrijver, On the period of an operator, defined on antichains, MC Report ZW 24/74, 1974. i+13 pp. MR0349497 (50 #1990), Zbl 0282.06003
    [A special case of the operation investigated here is that of Schutzenberger's promotion. The question posed is whether one has (the analog of) total promotion. In Problems, pp. 1190-1191 in: Combinatorics II, A. Hajnal & V. T. Sós (eds.), Proc. Keszthely 1976, Coll. Math. Soc. János Bolyai 18, North Holland, 1978, the authors ask whether the rectangle has total promotion. The same problem was also given in Le dernier problème, Canad. Math. Bull. 26 (1983) p. 374. The affirmative answer is implicit in M. P. Schutzenberger, Promotion des morphismes d'ensembles ordonnés, Discr. Math. 2 (1972) 73-95 (as was told me by Richard Stanley), and given very explicitly in M. Haiman, Dual equivalence with applications, including a conjecture of Proctor, Discr. Math. 99 (1992) 79-113, Theorem 4.4.]
  10. A. E. Brouwer, A compact treelike space is the continuous image of an ordered continuum, MC Report ZW 33/74, 7 pp. (1974). Zbl 0296.54029
  11. A. E. Brouwer & A. Schrijver, A characterization of supercompactness with an application to treelike spaces, MC Report ZW 34/74, 5 pp. (1974). Zbl 0292.54020
  12. A. E. Brouwer, On the number of unique subgraphs of a graph, JCT (B) 18 (1975) 184-185. MR0416977 (54 #5039), Zbl 0299.05111
    [This is MC Report ZN 56/73, Dec. 1973. MR (erroneously) gives the title as ‘Note: "On the number of unique subgraphs of a graph" (J. Combinatorial Theory Ser. B 13 (1972), 112--115) by R. C. Entringer and P. Erdős’.]
  13. A. E. Brouwer, On dual pairs of antichains, MC Report ZW 40/75, 8 pp. (1975). Zbl 0308.05006
  14. A. E. Brouwer & A. Schrijver, Graphs with balanced star-hypergraph, MC Report ZW 46/75, 2 pp. (1975). Zbl 0323.05134
  15. A. E. Brouwer, A(17,6,4) = 20 or the nonexistence of the scarce design SD(4,1;17,21), MC Report ZW 62/75, 13 pp. (1975). Zbl 0319.05015
  16. A. E. Brouwer & A. Schrijver, Two optimal constant weight codes, MC Report ZW 63/75, 5 pp. (1975). Zbl 0321.05025
  17. A. E. Brouwer & A. Schrijver, A group-divisible design GD(4, 1, 2; n) exists iff n ≡ 2 (mod 6), n ≠ 8 (or: The packing of cocktail party graphs with K4's), MC Report ZW 64/76, 9 pp. (1976). Zbl 0324.05016
  18. A. E. Brouwer, A generalization of Baranyai's theorem, MC Report ZW 81/76, 6 pp. (1976). Zbl 0341.05001
  19. A. E. Brouwer, A connected metric space without nontrivial open connected subspaces, MC Report ZW 83/76, 5 pp. (1976). Zbl 0332.54030
  20. A. E. Brouwer & J. van der Lune, A note on certain oscillating sums, MC Report ZW 90/76, 16 pp. (1976). Zbl 0359.10029
  21. Zs. Baranyai & A. E. Brouwer, Extension of colourings of the edges of a complete (uniform hyper) graph, MC Report ZW 91/77, 10 pp. (1977). Zbl 0362.05059
  22. A. E. Brouwer, Some non-isomorphic BIBDs B(4,1;v), MC Report ZW 102/77, 7 pp. (1977). Zbl 0366.05011
  23. A. E. Brouwer, Steiner triple systems without forbidden subconfigurations, MC Report ZW 104/77, 8 pp. (1977). Zbl 0367.05011
  24. M. R. Best & A. E. Brouwer, The triply shortened binary Hamming code is optimal, Discr. Math. 17 (1977) 235-245. MR0441537 (55 #14400), Zbl 0356.94009
  25. A. E. Brouwer, H. Hanani & A. Schrijver, Group divisible designs with block-size four, Discr. Math. 20 (1977) 1-10. MR0465894 (57 #5780), Zbl 0371.62105
    Reprinted as Discrete Math. 306 (2006) 939-947. Zbl 1093.05008
  26. A. E. Brouwer, Treelike spaces and related connected topological spaces, Mathematical Centre Tracts 75, Amsterdam, 1977. iv+109 pp. ISBN 90-6196-132-7. MR0474235 (57 #13882), Zbl 0396.54013
  27. A. E. Brouwer, A new 5-design, MC Report ZW 97/77, 1977. i+6 pp. MR0446998 (56 #5314), Zbl 0357.05016
  28. A. E. Brouwer, Het ontvouwen van een block design met λ > 1, in: Een pak met een korte broek. Papers presented to H. W. Lenstra, jr. on the occasion of the publication of his "Euclidische Getallenlichamen", edited by P. van Emde Boas, J. K. Lenstra, F. Oort, A. H. G. Rinnooy Kan, T. J. Wansbeek, Amsterdam, May 18, 1977.
  29. A. E. Brouwer, On the nonexistence of certain planar spaces, MC Report ZW 114, 12 pp. (1978). Zbl 0408.05012
  30. A. E. Brouwer, On the packing of quadruples without common triples, Ars Combinatoria 5 (1978) 3-6. MR0485465 (58 #5298), Zbl 0442.05019
  31. A. E. Brouwer, On associative block designs, pp. 173-184 in: Colloq. Math. Soc. J. Bolyai, 18. Combinatorics, Proc. Keszthely 1976, North-Holland, Amsterdam-New York, 1978. MR0519263 (80d:05009), Zbl 0383.05006
    An earlier version appeared as MC Report ZW 49/76, 16 p. (1976). Zbl 0328.05008
  32. J.-C. Bermond, A. E. Brouwer & A. Germa, Systèmes de triplets et différences associées, pp. 35-38 in: Problèmes Combinatoires et Théorie des Graphes, Proc. Conf. Orsay 1976, CNRS 1978. MR0539936 (80j:05020), Zbl 0412.05012
  33. M. R. Best, A. E. Brouwer, F. J. MacWilliams, A. M. Odlyzko & N. J. A. Sloane, Bounds for binary codes of length less than 25, IEEE Trans. Inf. Th. IT-24 (1978) 81-93. MR0479645 (57 #19066), Zbl 0369.94011
    Announced by NJAS in a note "Some new bounds on the size of codes (summary)" by the same 5 authors, pp. 499–500 in: Proc. of the 7th Southeastern Conference on Combinatorics, Graph Theory, and Computing (Baton Rouge, La., 1976), Congressus Numerantium, No. XVII, Utilitas Math., Winnipeg, Man., 1976. MR0432315 (55 #5304), Zbl 0338.94003

    Russian translation in Kibern. Sb., Nov. Ser. 17, 28-59 (1980). Zbl 0456.94015
  34. A. E. Brouwer & A. Schrijver, The blocking number of an affine space, JCT (A) 24 (1978) 251-253. MR0480094 (58 #293), Zbl 0373.05020
  35. A. E. Brouwer, A. J. de Vries & R. M. A. Wieringa, A lower bound for the length of partial transversals in a Latin square, Nieuw Archief voor Wiskunde (3) 26 (1978) 330-332. MR0480083 (58 #282), Zbl 0395.05012
  36. A. E. Brouwer, Two new nearly Kirkman triple systems, Utilitas Math. 13 (1978) 311–314. MR0491263 (58 #10527), Zbl 0379.05008
  37. A. E. Brouwer, The number of mutually orthogonal Latin squares---a table up to order 10000. MC Report ZW 123, 1979. ii+31 pp. MR0546453 (80f:05013), Zbl 0405.05013
  38. A. E. Brouwer & A. M. Cohen, The Poincaré series of the polynomials invariant under SU2 in its irreducible representation of degree ≤ 17, MC Report ZW 134/79, 20 pp. (1979). Zbl 0417.22008
    A typo in the title: it was 'of degree < 17'.
  39. A. E. Brouwer, Optimal packings of K4's into a Kn, JCT (A) 26 (1979) 278-297. MR0535158 (80j:05049), Zbl 0412.05030
    Earlier versions of parts of this appeared as A. E. Brouwer & A. Schrijver, A group-divisible design GD(4, 1, 2; n) exists iff n ≡ 2 (mod 6), n ≠ 8 (or: The packing of cocktail party graphs with K4's), MC Report ZW 64/76, 9 pp. (1976). Zbl 0324.05016 and A. E. Brouwer, Optimal packings of K4's into a Kn - The case n ≢ 2 (mod 3), MC Report ZW 76/76, 10 pp. (1976). Zbl 0328.05021 and A. E. Brouwer, Optimal packings of K4's into a Kn - The case n ≡ 5 (mod 6), MC Report ZW 82/76, 14 pp. (1976). Zbl 0341.05020
  40. A. E. Brouwer & A. Schrijver, Uniform hypergraphs, pp. 39-73 in: Packing and covering in combinatorics, Math. Centre Tracts 106, 1979. Zbl 0438.05003
  41. A. E. Brouwer, Wilson's theory, pp. 75-88 in: Packing and covering in combinatorics, Math. Centre Tracts 106, 1979. Zbl 0438.05014
  42. A. E. Brouwer, Packing and covering of (k choose t)-sets, pp. 89-97 in: Packing and covering in combinatorics, Math. Centre Tracts 106, 1979. Zbl 0438.05023
  43. A. E. Brouwer & M. Voorhoeve, Turán theory and the Lotto problem, pp. 99-105 in: Packing and covering in combinatorics, Math. Centre Tracts 106, 1979. Zbl 0438.05025
  44. A. E. Brouwer, A few new constant weight codes, IEEE Trans. Inform. Th. IT-26 (1980) 366. MR0570026 (81b:94039), Zbl 0427.94019
  45. A. E. Brouwer, On the existence of 30 mutually orthogonal Latin squares, MC Report ZW 136, 1980. iii+7 pp. MR0569742 (81d:05013), Zbl 0422.05017
  46. A. E. Brouwer, A series of separable designs with application to pairwise orthogonal Latin squares, Europ. J. Comb. 1 (1980) 39-41. MR0576764 (81i:05035), Zbl 0472.05013
    Appeared earlier as MC Report ZW77, 5 pp. (Aug. 1979). Zbl 0417.05009
  47. A. E. Brouwer, The enumeration of locally transitive tournaments, MC Report ZW 138, 1980. ii+6 pp. MR0585334 (81j:05068), Zbl 0436.05029
  48. A. E. Brouwer & A. W. J. Kolen, A super-balanced hypergraph has a nest point, MC Report ZW 146, 1980. i+7 pp. MR0600103 (81k:05077), Zbl 0438.05051
  49. A. E. Brouwer, Philippe Delsarte & Philippe Piret, On the (23,14,5) Wagner code, IEEE Trans. Inform. Th. IT-26 (1980) 742-743. MR0596288 (82b:94021), Zbl 0466.94021
  50. A. E. Brouwer & R. Tijdeman, On the edge-colouring problem for unions of complete uniform hypergraphs, Discr. Math. 34 (1981) 241-260. MR0613403 (82m:05043), Zbl 0471.05049
    Appeared earlier as MC Report ZW 122/79, May 1979, iv+25 pp.
    This is a combined version of separate CWI reports by both authors:
    A. E. Brouwer, On the edge-colouring property for the hereditary closure of a complete uniform hypergraph, MC Report ZW 95/77, April 1977, iii+15 pp. MR0444520 (56 #2871), Zbl 0357.05047, and
    R. Tijdeman, On the edge-colouring property for the hereditary closure of a complete uniform hypergraph II, MC Report ZW 106/78, April 1978, iii+5 pp.
  51. A. E. Brouwer, The linear spaces on 15 points, Ars Combinatoria 12 (1981) 3-35. MR0643849 (83b:05031), Zbl 0481.05019
    Appeared earlier as MC Report ZW 38/79, 20 pp. (1979). Zbl 0417.05016
    These results were extended by Ghislaine Heathcote, Linear spaces on 16 points, J. Combin. Des. 1 (1993) 359–378.
    And further by A. Betten & D. Betten, The proper linear spaces on 17 points, Discr. Appl. Math. 95 (1999) 83-108.
    And further by A. Betten & D. Betten, Note on the proper linear spaces on 18 points, pp. 40-54 in: A. Betten, A. Kohnert, R. Laue, A. Wassermann (eds.), Algebraic Combinatorics and Applications, Springer, 2001.
  52. A. E. Brouwer, On the size of a maximum transversal in a Steiner triple system, Canad. J. Math. 33 (1981) 1202-1204. MR0638375 (83c:05018), Zbl 0481.05016
    Appeared earlier as MC Report ZW 137/80, 4 pp. (1980). Zbl 0422.05012
  53. A. E. Brouwer, Embedding the affine plane of order 4 in a linear space with lines of size 4 and 85 points, Math. Centr. report ZN80, Amsterdam (Jan. 1978).
  54. Andries Brouwer & Hanfried Lenz, Unterräume von Blockplänen, pp. 383-389 in: Contributions to Geometry, Proc. Siegen 1978, J. Toelke & J. M. Wills (eds.), Birkhäuser Verlag, Basel, 1979. MR0568515 (82e:05026), Zbl 0425.51006
  55. Andries Brouwer & Hanfried Lenz, Subspaces of linear spaces of line size 4, Europ. J. Combin. 2 (1981) 323-330. MR0638406 (83g:05011), Zbl 0477.05016
  56. A. E. Brouwer, Some lotto numbers from an extension of Turán's theorem, MC Report ZW 152, 1981. i+6 pp. MR0611510 (82c:05057), Zbl 0443.05032
  57. A. E. Brouwer, The uniqueness of the near hexagon on 759 points, MC Report ZW 154, 1981. i+14 pp. MR0608966 (82j:05038), Zbl 0448.05020
  58. A. E. Brouwer, The uniqueness of the near hexagon on 759 points, Finite geometries (Pullman, Wash., 1981), pp. 47–60, Lecture Notes in Pure and Appl. Math., 82, Dekker, New York, 1983. MR0690795 (84d:51021), Zbl 0505.05020
  59. A. E. Brouwer, Some unitals on 28 points and their embeddings in projective planes of order 9, MC Report ZW 155, 1981. i+9 pp. MR0608964 (82j:05024), Zbl 0448.51010
  60. A. E. Brouwer, Some unitals on 28 points and their embeddings in projective planes of order 9, pp. 183–188 in: Geometries and groups (Berlin, 1981), Springer Lecture Notes in Math. 893, Berlin-New York, 1981. MR0655065 (83g:51010), Zbl 0557.51002
    Same title as previous, but different content.
  61. A. E. Brouwer, The nonexistence of a regular near hexagon on 1408 points, MC Report ZW 163/81, 8 pp. (1981). Zbl 0466.05022
  62. A. E. Brouwer, Regular near polygons do contain hexes, MC Report ZW 164/81, 9 p. (1981). Zbl 0466.05023
  63. A. E. Brouwer & H. A. Wilbrink, On regular near polygons, MC Report ZW 173/82, 34 pp. (1982). Zbl 0483.05020
  64. A. E. Brouwer & H. A. Wilbrink, Blocking sets in translation planes, J. Geometry 19 (1982) 200. MR0695712 (84f:51027), Zbl 0508.51007
  65. A. E. Brouwer & G. H. J. van Rees, More mutually orthogonal Latin squares, Discr. Math. 39 (1982) 263-281. MR0676191 (84c:05019), Zbl 0486.05015
    Appeared earlier as MC Report ZW 148/80, 26 p. (1980). Zbl 0443.05018
  66. Andries E. Brouwer & Peter van Emde Boas, A note on 'Master keys for group sharing', Inform. Proc. Letters 14 (1982) 12-14. MR0654070 (83h:94019), Zbl 0495.94006
    The same observation was made simultaneously and independently by Dorothy E. Denning, Henk Meijer & Fred. B. Schneider, More on master keys for group sharing, Inform. Proc. Letters 13 (1981) 125-126.
  67. A. E. Brouwer, Polarities of G. Higman's symmetric design and a strongly regular graph on 176 vertices, Aequationes Math. 25 (1982) 77-82. MR0716379 (85e:05089), Zbl 0518.05039
    Appeared earlier as MC Report ZW 158/81, 7 p. (1981). Zbl 0477.05015
  68. A. E. Brouwer, The uniqueness of the near hexagon on 729 points, Combinatorica 2 (1982) 333-340. MR0708147 (85c:51026), Zbl 0509.05028
    Appeared earlier as MC Report ZW 162/81, 10 p. (1981). Zbl 0466.05021
  69. A. E. Brouwer & H. A. Wilbrink, The structure of near polygons with quads, Geom. Dedicata 14 (1983) 145-176. MR0708631 (85b:05045), Zbl 0521.51013
  70. H. A. Wilbrink & A. E. Brouwer, A (57,14,1) strongly regular graph does not exist, Indag. Math. 45 (1983) 117-121. [= Proc. KNAW (A) 86 (1), March 28, 1983] MR0695596 (84i:05101), Zbl 0511.05056
    Appeared earlier as MC Report ZW 121/78, 5 pp. (1978). Zbl 0393.05028
  71. A. E. Brouwer, P. Duchet & A. Schrijver, Graphs whose neighborhoods have no special cycles, Discr. Math. 47 (1983) 177-182. MR0724656 (85h:05077), Zbl 0546.05047
  72. Andries E. Brouwer & Arjeh M. Cohen (with an appendix by J. Tits), Some remarks on Tits geometries, Indag. Math. 45 (1983) 393-402. [= Proc. KNAW (A) 86 (4), Dec. 19, 1983; with correspondence with Tits] MR0731822 (85c:51023), Zbl 0541.51011
  73. A. E. Brouwer, The uniqueness of the strongly regular graph on 77 points, J. Graph Th. 7 (1983) 455-461. MR0722062 (86b:05062), Zbl 0523.05021
    Appeared earlier as MC Report ZW 147, 1980. i+7 pp. MR0600104 (81k:05030), Zbl 0445.05052
  74. A. E. Brouwer, On the uniqueness of a certain thin near octagon (or partial 2-geometry, or parallelism) derived from the binary Golay code, IEEE Trans. Inform. Th. IT-29 (1983) 370-371. MR0712402 (85e:05150), Zbl 0505.94014
  75. A. E. Brouwer, An infinite series of symmetric designs, MC Report ZW 202/83, 1983. 5 pp. MR0747469 (85h:05016), Zbl 0534.05011
  76. A. E. Brouwer, Four MOLS of order 10 with a hole of order 2, J. Statist. Plann. Inference 10 (1984) 203-205. MR0760405 (86c:62091), Zbl 0553.05022
  77. A. E. Brouwer, Distance regular graphs of diameter 3 and strongly regular graphs, Discr. Math. 49 (1984) 101-103. MR0737624 (86a:05094), Zbl 0538.05024
  78. A. E. Brouwer & J. H. van Lint, Strongly regular graphs and partial geometries, pp. 85-122 in: Enumeration and Design - Proc. Silver Jubilee Conf. on Combinatorics, Waterloo, 1982, D. M. Jackson & S. A. Vanstone (eds.), Academic Press, Toronto, 1984. MR0782310 (87c:05033), Zbl 0555.05016
    Correction: On p. 100, A construction by D. Taylor, it should say: ... the triples {x,y,z} for which H(x,y)H(y,z)H(z,x) is a square (for q ≡ 3 mod 4) / nonsquare (for q ≡ 1 mod 4) in GF(q^2).
    Russian transl. in Kibern. Sb., Nov. Ser. 24, 186-229 (1987). Zbl 0636.05013
  79. A. E. Brouwer & H. A. Wilbrink, A symmetric design with parameters 2-(49,16,5), JCT (A) 37 (1984) 193-194. MR0757613 (85i:05031), Zbl 0541.05013
  80. H. A. Wilbrink & A. E. Brouwer, A characterization of two classes of semi-partial geometries by their parameters, Simon Stevin 58 (1984) 273-288. MR0787390 (86e:51020), Zbl 0558.51009 [ZW175, Aug. 1982]
  81. A. Blokhuis & A. E. Brouwer, Uniqueness of a Zara graph on 126 points and non-existence of a completely regular two-graph on 288 points, pp. 6-19 in: Papers dedicated to J. J. Seidel, P. J. de Doelder, J. de Graaf & J. H. van Lint (eds.), Eindhoven Univ. of Techn. Report 84-WSK-03, Aug 1984. Zbl 0554.05049
  82. A. E. Brouwer, Some new two-weight codes and strongly regular graphs, Discr. Applied Math. 10 (1985) 111-114. MR0770872 (86d:05023), Zbl 0561.94008
  83. A. Blokhuis, A. E. Brouwer, D. Buset & A. M. Cohen, The locally icosahedral graphs, pp. 19-22 in: Finite geometries, Proc. Winnipeg 1984, C. A. Baker & L. M. Batten (eds.), Lecture Notes in Pure and Applied Math. 103, Marcel Dekker, New York, 1985. MR0826792 (87k:05133), Zbl 0587.05059
  84. A. E. Brouwer & A. M. Cohen, Computation of some parameters of Lie geometries, pp. 1-48 in: Algorithms in Combinatorial Design Theory, C. J. & M. J. Colbourn (eds.), Ann. Discr. Math. 26, North Holland, Amsterdam, 1985. MR0833782 (87h:51015), Zbl 0575.51008
  85. A. E. Brouwer & D. M. Mesner, The connectivity of strongly regular graphs, Eur. J. Combin. 6 (1985) 215-216. MR0818594 (87i:05132), Zbl 0607.05045
  86. A. E. Brouwer, An inequality in binary vector spaces, Discr. Math. 59 (1986) 315-317. MR0842283 (87h:05051), Zbl 0598.51010
    Shows that if 2n has an irredundant cover by m affine subspaces with zero intersection, then m > n.
    Appeared earlier as MC Report ZW 150, Feb. 1981. i+3 pp. MR0611509 (82c:05040), Zbl 0448.51009
    This answered a question asked by Bernhard Ganter. Also settled a conjecture on the covering of Boolean algebras by subalgebras by Bruns & Greechie, cf. MR0663312 (84b:06011b). Result rediscovered and generalized by Balázs Szegedy, Coverings of Abelian groups and vector spaces, JCT (A) 114 (2007) 20-34. For coverings of the real n-cube, see Noga Alon & Zoltán Füredi, Covering the Cube by Affine Hyperplanes, Eur. J. Comb. 14 (1993) 79-83.
  87. A. E. Brouwer, Uniqueness and nonexistence of some graphs related to M22, Graphs Combin. 2 (1986) 21-29. MR1117128 (92e:05092), Zbl 0592.05027
  88. A. Blokhuis & A. E. Brouwer, Blocking sets in desarguesian projective planes, Bull. London Math. Soc. 18 (1986) 132-134. MR0818815 (87c:51013), Zbl 0563.05016
    James Hirschfeld points out two typos: p. 132, line -5: n/2 should be [n/2], and p. 133, Corollary: ≤ should be ≥.
  89. A. E. Brouwer & A. R. Calderbank, An Erdös-Ko-Rado theorem for regular intersecting families of octads, Graphs Combin. 2 (1986) 309-316. MR0951556 (89g:05038), Zbl 0616.05010
  90. A. E. Brouwer & A. M. Cohen, Local recognition of Tits geometries of classical type, Geom. Dedicata 20 (1986) 181-199. MR0833846 (87m:51006), Zbl 0585.51010
  91. A. Blokhuis, A. E. Brouwer, A. Delandtsheer & J. Doyen, Orbits on points and lines in finite linear and quasilinear spaces, J. Combin. Th. (A) 44 (1987) 159-163. MR0871398 (88f:51014), Zbl 0606.51009
  92. A. E. Brouwer & E. W. Lambeck, An inequality on the parameters of distance regular graphs and the uniqueness of a graph associated to M23, Ann. Discrete Math. 34 (1987) 100-106. MR0920636 (88k:05153), Zbl 0629.05055
  93. A. E. Brouwer, E. C. Posner & Z. Reichstein, Hadamard codes which have an even number of ones in each half, Utilitas Math. 32 (1987) 131-140. MR0921642 (89b:94032), Zbl 0643.94013
  94. A. E. Brouwer & H. J. Veldman, Contractibility and NP-completeness, J. Graph Th. 11 (1987) 71-79. MR0876206 (88e:05101), Zbl 0603.05016
  95. J. T. M. van Bon & A. E. Brouwer, The distance-regular antipodal covers of classical distance-regular graphs, pp. 141-166 in: Colloq. Math. Soc. János Bolyai, Proc. Eger 1987, 1988. MR1221554 (94b:05216), Zbl 0747.05038
  96. A. Blokhuis & A. E. Brouwer, Geodetic graphs of diameter two, Geom. Dedicata 25 (1988) 527-533. MR0925851 (88k:05133), Zbl 0667.05037 [wrong]
  97. A. E. Brouwer & A. Neumaier, A remark on partial linear spaces of girth 5 with an application to strongly regular graphs, Combinatorica 8 (1988) 57-61. MR0951993 (89i:05253), Zbl 0668.05015
    An earlier version appeared as A. E. Brouwer & A. Neumaier, Strongly regular graphs where mu equals two and lambda is large, MC Report ZW 151/81, March 1981, i+7 pp. MR0608965 (82k:05032), Zbl 0448.05021
    A strengthening was given by Bhaskar Bagchi, On strongly regular graphs with μ ≤ 2, Discr. Math. 306 (2006) 1502-1504.
  98. A. E. Brouwer, [construction of a Kirkman triple system KTS(81) with a subsystem KTS(15)], in: review MR0897653 (88f:05024).
  99. A. Blokhuis, A. E. Brouwer & H. A. Wilbrink, Heden's bound on maximal partial spreads, Discr. Math. 74 (1989) 335-339. MR0992747 (90h:51014), Zbl 0664.51007
  100. A. Blokhuis & A. E. Brouwer, Locally 4-by-4 grid graphs, J. Graph Th. 13 (1989) 229-244. MR0994744 (90h:05096), Zbl 0705.05057 and Zbl 0722.05054
  101. A. E. Brouwer, A. M. Cohen & A. Neumaier, Distance-regular graphs, Ergebnisse der Mathematik (3) 18, Springer-Verlag, Berlin, 1989. xvii+495 pp. ISBN: 3-540-50619-5 MR1002568 (90e:05001), Zbl 0747.05073
    Softcover reprint July 2012 with ISBN 978-3-642-74343-6.
  102. A. E. Brouwer, A unital in the Hughes plane of order nine, Discr. Math. 77 (1989) 55-56. MR1022450 (91b:51008), Zbl 0719.05013
  103. A. E. Brouwer, A. V. Ivanov & M. H. Klin, Some new strongly regular graphs, Combinatorica 9 (1989) 339-344. MR1054010 (91f:05120), Zbl 0709.05040
  104. A. E. Brouwer, A remark on association schemes with two P-polynomial structures, Europ. J. Comb. 10 (1989) 523-526. MR1022772 (91b:05171), Zbl 0698.05020
  105. A. E. Brouwer & A. Neumaier, The graphs with spectral radius between 2 and √(2 + √5), Lin. Alg. Appl. 114/115 (1989) 273-276. MR0986880 (90f:05094), Zbl 0678.05038
  106. A. E. Brouwer, Uniqueness of the Biggs-Smith graph, pp 75-78 in: Graph theory in memory of G. A. Dirac, Proc. Sandbjerg 1985, L. D. Andersen e.a. (eds.), North Holland, 1989. (Ann. Discrete Math. 41 (1989) 75-78) MR0975992 (89m:05058), Zbl 0668.05050
  107. Catharine Ann Baker, Aart Blokhuis, Andries E. Brouwer & Henny A. Wilbrink, Characterization theorems for failed projective and affine planes, pp. 42-53 in: Coding Theory and Design Theory, Part II: Design Theory, Dijen Ray-Chaudhuri, ed., Springer, New York, 1990. MR1056524 (91e:51004), Zbl 0707.51006
    The name of the first author was inadvertently omitted.
  108. A. E. Brouwer & E. E. Shult, Graphs with odd cocliques, Eur. J. Combin. 11 (1990) 99-104. MR1044447 (91f:05062), Zbl 0717.05060
  109. A. E. Brouwer, James B. Shearer, N. J. A. Sloane & Warren D. Smith, A new table of constant weight codes, IEEE Trans. Inform. Th. 36 (1990) 1334-1380. MR1080820 (91h:94028), Zbl 0713.94017
  110. A. E. Brouwer & H. A. Wilbrink, Ovoids and fans in the generalized quadrangle GQ(4,2), Geom. Dedicata 36 (1990) 121-124. MR1065216 (91h:51007), Zbl 0716.51007
  111. A. E. Brouwer, A note on completely regular codes, Discr. Math. 83 (1990) 115-117. MR1065690 (92d:94034), Zbl 0706.94022
  112. B. Bagchi, A. E. Brouwer & H. A. Wilbrink, Notes on binary codes related to the O(5,q) generalized quadrangle for odd q, Geom. Dedicata 39 (1991) 339-355. MR1123148 (93e:51017), Zbl 0734.94019
  113. Aart Blokhuis, Andries E. Brouwer & Henny A. Wilbrink, Hermitian unitals are code words, Discr. Math. 97 (1991) 63-68. MR1140788 (93b:51017), Zbl 0758.05025
  114. A. E. Brouwer, A non-degenerate generalized quadrangle with lines of size four is finite, pp. 47-49 in: Advances in Finite Geometries and Designs, Proc. Isle of Thorns 1990, J. W. P. Hirschfeld, D. R. Hughes & J. A. Thas (eds.), Oxford Univ. Press, 1991. MR1138733 (92m:51008), Zbl 0734.51005
  115. A. E. Brouwer, Recursive constructions of mutually orthogonal Latin squares, pp 149-168 in: Latin squares - new developments in the theory and applications, J. Dénes & A. D. Keedwell (eds.), North Holland, Amsterdam, 1991. (Ann. Discrete Math. 46 (1991) 149-168) Zbl 0742.05017
  116. A. E. Brouwer & Joe Hemmeter, A new family of distance-regular graphs and the {0,1,2}-cliques in dual polar graphs, Eur. J. Combin. 13 (1992) 71-79. MR1158800 (93c:05119), Zbl 0762.05041
  117. A. Blokhuis & A. E. Brouwer, Locally K33 or Petersen graphs, Discrete Math. 106/107 (1992) 53-60. MR1181896 (93k:05143), Zbl 0772.05071
  118. A. E. Brouwer & W. H. Haemers, Structure and uniqueness of the (81,20,1,6) strongly regular graph, Discr. Math. 106/107 (1992) 77-82. MR1181899 (93g:05149), Zbl 0764.05098
  119. A. E. Brouwer, W. H. Haemers & H. A. Wilbrink, Some 2-ranks, Discr. Math. 106/107 (1992) 83-92. MR1181900 (93k:51006), Zbl 0757.94019
  120. A. E. Brouwer & C. A. van Eijl, On the p-rank of the adjacency matrices of strongly regular graphs, J. Alg. Comb. 1 (1992) 329-346. MR1203680 (94b:05217), Zbl 0780.05039
  121. A. E. Brouwer, The composition factors of the Weyl modules with fundamental weights for the symplectic group, unpublished preprint, 1992.
  122. A. E. Brouwer & J. H. Koolen, A new infinite series of regular uniformly geodetic code graphs, Discr. Math. 120 (1993) 241-247. MR1235913 (94h:05063), Zbl 0781.05017
  123. A. E. Brouwer, I. J. Dejter & C. Thomassen, Highly symmetric subgraphs of hypercubes, J. Alg. Comb. 2 (1993) 25-29. MR1210399 (94c:05037), Zbl 0788.05041
  124. A. E. Brouwer & W. H. Haemers, The Gewirtz graph - an exercise in the theory of graph spectra, Europ. J. Comb. 14 (1993) 397-407. MR1241907 (94k:05219), Zbl 0794.05076
  125. A. E. Brouwer, On complete regularity of extended codes, Discr. Math. 117 (1993) 271-273. MR1226149 (94e:94023), Zbl 0778.94010
  126. A. E. Brouwer, The linear programming bound for binary linear codes, IEEE Trans. Inform. Th. 39 (1993) 677-680. MR1224356 (94b:94019), Zbl 0776.94018
  127. A. E. Brouwer & T. Verhoeff, An updated table of minimum-distance bounds for binary linear codes, IEEE Trans. Inform. Th. 39 (1993) 662-677. MR1224355 (94d:94010), Zbl 0776.94017
  128. A. E. Brouwer & L. M. G. M. Tolhuizen, A sharpening of the Johnson bound for binary linear codes and the nonexistence of linear codes with Preparata parameters, Designs, Codes & Cryptography 3 (1993) 95-98. MR1218941 (94d:94009), Zbl 0770.94005
  129. A. E. Brouwer, D. G. Fon-der-Flaass & S. V. Shpectorov, Locally co-Heawood graphs, pp. 59-68 in: Finite geometry and combinatorics - Proc. Deinze 1992, F. De Clerck et al. (eds.), London Math. Soc. Lect. Note Ser. 191, Cambridge Univ. Press, 1993. MR1256264 (94k:05155), Zbl 0787.05085
  130. A. E. Brouwer, The complement of a geometric hyperplane in a generalized polygon is usually connected, pp. 53-57 in: Finite geometry and combinatorics - Proc. Deinze 1992, F. De Clerck et al. (eds.), London Math. Soc. Lect. Note Ser. 191, Cambridge Univ. Press, 1993. MR1256263 (94m:51005), Zbl 0794.51003
  131. A. E. Brouwer, The classification of near hexagons with lines of size three, Instit. f. Elektron. Syst., Aalborg Univ., Report R85-16, Sept. 1985.
  132. A. E. Brouwer, A. M. Cohen, J. I. Hall & H. A. Wilbrink, Near polygons and Fischer spaces, Geometriae Dedicata 49 (1994) 349-368. MR1270562 (95a:51026), Zbl 0801.51012
  133. A. E. Brouwer, On the uniqueness of a regular thin near octagon on 288 vertices (or the semibiplane belonging to the Mathieu group M12), Discr. Math. 126 (1994) 13-27. MR1264473 (94k:05220), Zbl 0793.51003
    Appeared earlier as MC Report ZW 196, 1983. 12 pp. MR0747977 (85g:05046), Zbl 0547.51007
  134. A. E. Brouwer & M. Numata, A characterization of some graphs which do not contain 3-claws, Discr. Math. 124 (1994) 49-54. MR1258841 (94m:05153), Zbl 0791.05084
  135. A. E. Brouwer, Finite graphs in which the point neighbourhoods are the maximal independent sets, pp. 231-233 in: From Universal Morphisms to Megabytes: A Baayen Space Odyssey, K. R. Apt, A. Schrijver & N. M. Temme (eds.), Stichting Mathematisch Centrum, Amsterdam, 1994. MR1490593, href="http://zbmath.org/?q=an:0838.05088">Zbl 0838.05088
  136. A. E. Brouwer, Joe Hemmeter & Andrew Woldar, The complete list of maximal cliques of Quad (n,q), q odd, Eur. J. Combin. 16 (1995) 107-110. MR1324421 (96a:05144), Zbl 0854.05101
  137. A. E. Brouwer & H. A. Wilbrink, Block Designs, pp. 349-382 in: Handbook of incidence geometry, F. Buekenhout (ed.), Elsevier, Amsterdam, 1995. MR1360723 (97j:05018), Zbl 0823.51007
  138. A. Blokhuis, A. E. Brouwer & T. Szőnyi, The number of directions determined by a function f on a finite field, J. Combin. Th. (A) 70 (1995) 349-353. MR1329399 (96i:51011), Zbl 0823.51013
  139. A. E. Brouwer, Toughness and spectrum of a graph, Lin. Alg. Appl. 226-228 (1995) 267-271. MR1344566 (96i:05112), Zbl 0833.05048
  140. A. E. Brouwer, Block Designs, pp. 693-745 in: Handbook of Combinatorics, R. Graham, M. Groetschel, L. Lovász, eds., Elsevier, 1995. MR1373670 (97b:05014), Zbl 0848.05008
  141. A. E. Brouwer & W. H. Haemers, Association schemes, pp. 747-771 in: Handbook of Combinatorics, R. Graham, M. Groetschel, L. Lovász, eds., Elsevier, 1995. MR1373671 (97a:05217), Zbl 0849.05072
  142. A. E. Brouwer, Variations on a theme by Weetman, Discrete Math. 138 (1995) 137-145. MR1322088 (95m:05247), Zbl 0821.05058
  143. A. E. Brouwer, Spectrum and connectivity of graphs, Proc. Symp. on Algebraic Combinatorics, Kyoto, 1993, RIMS Sūrikaisekikenkyūsho Kōkyūroku 896 (1995) 58-62. MR1348421
  144. A. E. Brouwer, Spectrum and connectivity of graphs, CWI Quarterly 9 (1996) 37-40. MR1420014 (97m:05176), Zbl 0872.05034
  145. A. E. Brouwer, A. A. Bruen & D. L. Wehlau, There exist caps which block all spaces of fixed codimension in PG(n,2), JCT (A) 73 (1996) 168-169. MR1367615 (96m:51015), Zbl 0843.51012
    In this 2-page note, the 3 authors prove that ...
  146. R. J. R. Abel, A. E. Brouwer, C. J. Colbourn & J. H. Dinitz, Mutually Orthogonal Latin Squares, pp. 111-142 in: The CRC Handbook of Combinatorial Designs, C. J. Colbourn, J. H. Dinitz, eds., CRC Press, 1996. Zbl 0849.05009
  147. A. E. Brouwer, Strongly regular graphs, pp 667-685 in: The CRC Handbook of Combinatorial Designs, C. J. Colbourn, J. H. Dinitz, eds., CRC Press, 1996. Zbl 0848.05071
  148. A. Blokhuis & A. E. Brouwer, Determination of the distance-regular graphs without 3-claws, Discr. Math. 163 (1997) 225-227. MR1428573 (97g:05171), Zbl 0871.05062
  149. A. E. Brouwer & H. M. Mulder, The vertex connectivity of a {0,2}-graph equals its degree, Discr. Math. 169 (1997) 153-155. MR1449711 (97m:05158), Zbl 0873.05062
  150. A. E. Brouwer & M. van Eupen, The correspondence between projective codes and 2-weight codes, Designs, Codes and Cryptography 11 (1997) 261-266. MR1451730 (98a:94031), Zbl 0872.94043
  151. A. E. Brouwer, W. H. Haemers & V. D. Tonchev, Embedding Partial Geometries in Steiner Designs, pp. 33-41 in: Geometry, Combinatorial Designs and Related Structures, Proceedings of the First Pythagorean Conference, J. W. P. Hirschfeld, S. S. Magliveras, M. J. de Resmini (eds.), Cambridge University Press, 1997. MR1700838 (2000e:51012), Zbl 0892.51004
  152. A. E. Brouwer, H. O. Hämäläinen, P. R. J. Östergård & N. J. A. Sloane, Bounds on Mixed Binary/Ternary Codes, IEEE Trans. Inf. Th. 44 (1998) 140-161. MR1486654 (99b:94057), Zbl 0911.94009
    For additions and corrections, see the current on-line table.
  153. R. J. Blok & A. E. Brouwer, The geometry far from a residue, pp. 29-38 in: Groups and Geometries, L. di Martino, W. M. Kantor, G. Lunardon, A. Pasini, M. C. Tamburini (eds.), Birkhaüser Verlag, Basel, 1998. MR1644973 (99k:51015), Zbl 0899.51005
    Correction: far from a chamber the F4(2) geometry has 16 connected components. (Details in Blok's thesis.)
  154. A. E. Brouwer & R. J. Riebeek, The spectrum of the second subconstituent of the bilinear forms graph Hq(d,e), Europ. J. Combin. 19 (1998) 299-305. MR1621009 (99c:05130), Zbl 0901.05091
  155. A. E. Brouwer, Linear spaces of quadrics and new good codes, Bull. Belg. Math. Soc. 5 (1998) 177-180. MR1630022 (99j:94073), Zbl 0929.51007
  156. A. E. Brouwer & R. J. Riebeek, The spectra of Coxeter graphs, J. Alg. Comb. 8 (1998) 15-28. MR1635551 (99g:05129), Zbl 0974.05053
  157. A. E. Brouwer, J. H. Koolen & R. J. Riebeek, A new distance-regular graph associated to the Mathieu group M10, J. Alg. Comb. 8 (1998) 153-156. MR1648472 (99g:05184), Zbl 0930.05100
  158. R. J. Blok & A. E. Brouwer, Spanning point-line geometries in buildings of spherical type, J. Geometry 62 (1998) 26-35. MR1631458 (99f:51019), Zbl 0915.51004
    Appeared earlier as Report 95-124, Fac. of Techn. Math. and Inf., TU Delft, 1995. 9pp.
  159. A. E. Brouwer, Bounds on the size of linear codes, pp. 295-461 in: Handbook of Coding Theory, V. S. Pless and W. C. Huffman, eds., Elsevier, Amsterdam, 1998. MR1667940, Zbl 0936.94015
  160. A. E. Brouwer, H. C. A. van Tilburg & E. R. Verheul, Een beschrijving en analyse van IDEA, IWDE report, 1998.
  161. A. Blokhuis, S. Ball, A. E. Brouwer, L. Storme & T. Szőnyi, On the number of slopes of the graph of a function defined on a finite field, JCT (A) 86 (1999) 187-196. MR1682973 (2000g:05039), Zbl 0945.51002
  162. A. E. Brouwer & J. H. Koolen, The distance-regular graphs of valency four, J. Alg. Combin. 10 (1999) 5-24. MR1701280 (2000h:05236), Zbl 0929.05093
  163. A. E. Brouwer, R. M. Wilson & Qing Xiang, Cyclotomy and Strongly Regular Graphs, J. Alg. Combin 10 (1999) 25-28. MR1701281 (2000h:05235), Zbl 0929.05094
  164. A. E. Brouwer, An associative block design ABD(8,5), SIAM. J. Comput. 28 (1999) 1970-1971 (electronic). MR1698985 (2000b:05021), Zbl 0935.05026
  165. A. Blokhuis & A. E. Brouwer, The universal embedding dimension of the near polygon on the 1-factors of a complete graph, Designs, Codes and Cryptography 17 (1999) 299-303. MR1715269 (2000e:05047), Zbl 0944.51003
  166. A. E. Brouwer, R. Pellikaan & E. R. Verheul, Doing more with fewer bits, pp. 321-332 in Advances in Cryptology Asiacrypt '99, K. Y. Lam, E. Okamoto and C.-P. Xing, Eds., Lect. Notes Comp. Sci. 1716, Springer, Berlin 1999. Zbl 0977.94025
  167. A. E. Brouwer, Locally Paley graphs, Designs, Codes and Cryptography 21 (2000) 69-76. MR1801162 (2001m:05163), Zbl 0964.05074
  168. Galina T. Bogdanova, Andries E. Brouwer, Stolan N. Kapralov & Patric R. J. Östergård, Error-correcting codes over an alphabet of four elements, Designs, Codes and Cryptography 23 (2001) 333-342. MR1840915 (2003b:94078), Zbl 1011.94029
    Abstract in Proc. IEEE Symp. on Inf. Th. (ISIT 2000), Sorrento 2000, p. 142.
  169. A. E. Brouwer, H. Cuypers & E. W. Lambeck, The hyperplanes of the M24 near polygon, Graphs Combin. 18 (2002) 415-420. MR1939065 (2003j:05033), Zbl 1025.51001
  170. A. E. Brouwer, Automatic summation using Zeilberger-Wilf theory, Nieuw Archief voor Wiskunde 3 (2002) 308-312. MR1945943, Zbl 1239.33001
  171. A. Blokhuis & A. E. Brouwer, The universal embedding dimension of the binary symplectic dual polar space, Discr. Math. 264 (2003) 3-11. MR1972016 (2004c:05211), Zbl 1018.51001
  172. A. E. Brouwer, J. H. Koolen & M. H. Klin, A root graph that is locally the line graph of the Petersen graph, Discr. Math. 264 (2003) 13-24. MR1972017 (2004b:05171), Zbl 1023.05135
  173. A. E. Brouwer, C. D. Godsil, J. H. Koolen & W. J. Martin, Width and dual width of subsets in polynomial association schemes, JCT (A) 102 (2003) 255-271. MR1979532 (2004i:05158), Zbl 1018.05108
  174. A. E. Brouwer, Bounds on linear codes over a small alphabet, Appendix (pp. 412-454) in the book Dmitrii Nogin, Michael A. Tsfasman, Serge Vladuts, Algebraic geometry codes. Basic notions. Independent University of Moscow, MCCME. Moscow, 2003.
  175. A. Blokhuis, A. E. Brouwer & H. A. Wilbrink, Blocking sets in PG(2,p) for small p, and partial spreads in PG(3,7), Advances in Geometry, special issue (2003) S245-S253. MR2028401 (2005a:51014), Zbl 1044.51006
    This finds all blocking sets of size 3(p+1)/2 in PG(2,p) for p < 41. It turns out that there are no new such blocking sets for p=41, 43 but there is a new lacunary polynomial for p=41 (Dec. 2021).
  176. A. Blokhuis & A. E. Brouwer, Small additive quaternary codes, Europ. J. Combin. 25 (2004) 161-167. MR2070537 (2005c:94068), Zbl 1046.94012
  177. A. E. Brouwer, On the connectivity of distance-regular graphs, Proc. Workshop on Distance-Regular Graphs and Finite Geometry, Busan, Korea, July 2004, pp. 111-113.
  178. A. E. Brouwer & W. H. Haemers, Eigenvalues and perfect matchings, Lin. Alg. Appl. 395 (2005) 155-162. MR2112881 (2005k:05134), Zbl 1056.05097
  179. Andries E. Brouwer, Gábor Horváth, Ildikó Molnár-Sáska & Csaba Szabó, On three-rowed Chomp, Electronic J. Combin. Number Th. 5 (2005) #G07. MR2192255 (2006g:11051), Zbl 1134.11317 [error]
  180. Andries E. Brouwer, Chomp on a binary projective space, Bayreuther Mathematische Schriften 74 (2005) 76-78. MR2220240, Zbl 1184.91056
  181. Andries E. Brouwer, Arjeh M. Cohen, Man V. M. Nguyen, Orthogonal arrays of strength 3 and small run sizes, J. Statist. Planning and Inference 136 (2006) 3268-3280. MR2281242, Zbl 1097.62067
  182. A. E. Brouwer, P. J. Cameron, W. H. Haemers & D. A. Preece, Self-dual, not self-polar, Discr. Math. 306 (2006) 3051-3053. MR2273133 (2007k:05009), Zbl 1106.51004
  183. Andries E. Brouwer, Classification of small (0,2)-graphs, JCT (A) 113 (2006) 1636-1645. MR2269544 (2007j:05151), Zbl 1105.05009
  184. A. E. Brouwer, Sudoku puzzles and how to solve them, Nieuw Archief Wisk. (Ser. 5) 7 (2006) 258-263. Zbl 1141.00300
  185. A. E. Brouwer, Sudoku puzzles and how to solve them, Newsletter of the European Math. Soc. 66 (Dec 2007) 13-17. Zbl 1139.00301 [B&W version of previous]
  186. A. E. Brouwer, Strongly regular graphs, pp. 852-867 in: The CRC Handbook of Combinatorial Designs, 2nd edition, C. J. Colbourn, J. H. Dinitz, eds., CRC Press, 2006.
  187. A. E. Brouwer & S. A. Hobart, Directed strongly regular graphs, pp 868-874 in: The CRC Handbook of Combinatorial Designs, 2nd edition, C. J. Colbourn, J. H. Dinitz, eds., CRC Press, 2006. (or 2007?) Zbl 1110.05320
  188. A. E. Brouwer, On the connectivity of distance-regular graphs, pp 17-18 in: Algebraic Combinatorics, An International Conference in Honor of Eiichi Bannai's 60th Birthday, Sendai, June 26-30, 2006, edited by A. Munemasa et al., 2007. [extended abstract, announces the Brouwer-Koolen paper]
  189. Aart Blokhuis, Andries E. Brouwer & Willem H. Haemers, On 3-chromatic distance-regular graphs, Designs, Codes and Cryptography 44 (2007) 293-305. MR2336413 (2008j:05366), Zbl 1123.05094
  190. A. E. Brouwer, Small integral trees, Electronic J. Combinatorics 15 (2008) N1. MR2383427 (2008m:05168), Zbl 1158.05314
  191. Andries E. Brouwer, Gerhard F. Post & Gerhard J. Woeginger, Tight bounds for break minimization, J. Combin. Th. (A) 115 (2008) 1065-1068. MR2423349 (2009f:05037), Zbl 1151.90014
  192. A. E. Brouwer, A. Jurišić & J. H. Koolen, Characterization of the Patterson graph, J. Algebra 320 (2008) 1878-1886. MR2437634 (2009c:05252), Zbl 1168.05314
  193. A. E. Brouwer & W. H. Haemers, A lower bound for the Laplacian eigenvalues of a graph: Proof of a conjecture by Guo, Lin. Alg. Appl. 429 (2008) 2131-2135. MR2446646 (2009i:05143), Zbl 1144.05315
  194. A. E. Brouwer & W. H. Haemers, The integral trees with spectral radius 3, Lin. Alg. Appl. 429 (2008) 2710-2718. MR2455526 (2009i:05142), Zbl 1152.05042
  195. A. E. Brouwer & W. H. Haemers, Hamiltonian strongly regular graphs, CentER Discussion Paper Nr.:2008–28, Tilburg University.
  196. The main result here is weaker than Bigalke & Jung, Über Hamiltonsche Kreise und unabhängige Ecken in Graphen, Monatshefte für Math. 88 (1979) 195-210.
  197. Andries E. Brouwer & Patric R. J. Östergård, Classification of the (0,2)-graphs of valency 8, Discr. Math. 309 (2009) 532-547. MR2499006 (2010c:05111), Zbl 1194.05129
  198. A. E. Brouwer & J. H. Koolen, The vertex-connectivity of a distance-regular graph, Eur. J. Combin. 30 (2009) 668-673. MR2494440 (2010h:05338), Zbl 1175.05072
  199. Andries E. Brouwer, Naoyuki Horiguchi, Masaaki Kitazume & Hiroyuki Nakasora, A construction of the sporadic Suzuki graph from U3(4), JCT (A) 116 (2009) 1056-1062. MR2522419 (2010h:05064), Zbl 1193.05045
  200. A. E. Brouwer & E. Spence, Cospectral Graphs on 12 Vertices, Electr. J. Combin. 16(1) (2009) N20. MR2515760 (2010f:05113), Zbl 1185.05097
  201. A. E. Brouwer, The eigenvalues of oppositeness graphs in buildings of spherical type, pp. 1-10 in: Combinatorics and Graphs, R. A. Brualdi, S. Hedayat, H. Kharaghani, G. B. Khosrovshahi, S. Shahriari (eds.), AMS Contemporary Mathematics Series 531, 2010. MR2757785 (2012e:05418), Zbl 1232.05122
  202. A. E. Brouwer & M. Popoviciu, The invariants of the binary nonic, J. Symb. Comput. 45 (2010) 709-720. MR2639312 (2011e:13012), Zbl 1189.13005
  203. A. E. Brouwer & M. Popoviciu, The invariants of the binary decimic, J. Symb. Comput. 45 (2010) 837-843. MR2657667 (2011f:13007), Zbl 1192.13005
  204. A. Blokhuis, A. E. Brouwer, A. Chowdhury, P. Frankl, T. Mussche, B. Patkós & T. Szőnyi, A Hilton-Milner theorem for vector spaces, Electr. J. of Combinatorics 17 (2010) R71. MR2651724 (2011f:05321), Zbl 1189.05171
  205. A. Blokhuis, A. E. Brouwer & T. Szőnyi, Covering all points except one, J. Algebr. Combin. 32 (2010) 59-66. MR2657713 (2011k:51010), Zbl 1204.51014
  206. A. E. Brouwer & J. Draisma, Equivariant Gröbner bases and the Gaussian two-factor model, Mathematics of Computation 80 (2011) 1123-1133. MR2772115 (2012g:13049), Zbl 1211.13018
  207. A. E. Brouwer, R. R. Del-Vecchio, D. P. Jacobs, V. Trevisan & C. T. M. Vinagre, Integral trees homeomorphic to a double star, Bulletin of the ICA 61 (2011) 77-80. MR2724557 (2011k:05131), Zbl 1220.05017
  208. A. E. Brouwer & I. M. Wanless, Universally noncommutative loops, Bulletin of the ICA 61 (2011) 113-115. MR2724562 (2012a:05053), Zbl 1219.05022
  209. A. E. Brouwer & T. Etzion, Some new distance-4 constant weight codes, Advances in Mathematics of Communications 5 (2011) 417-424. MR2831612, Zbl 1248.94127
  210. A. E. Brouwer & M. Popoviciu, SL2-modules of small homological dimension, Transformation Groups 16 (2011) 599-617. MR2827036, Zbl 1230.13009
  211. Aart Blokhuis, Andries E. Brouwer, Tamás Szőnyi & Zsuzsa Weiner, On q-analogues and stability theorems, J. Geometry 101 (2011) 31-50. MR2860650, Zbl 1238.05264
  212. Andries E. Brouwer and Dmitrii V. Pasechnik, Two distance-regular graphs, J. Algebr. Combin. 36 (2012) 403-407. MR2969069, Zbl 1254.05199
  213. A. E. Brouwer & W. H. Haemers, Spectra of graphs, Universitext. Springer, New York, 2012. xiv+250 pp. ISBN: 978-1-4614-1938-9 MR2882891, Zbl 1231.05001
  214. A. E. Brouwer, O. Olmez & S. Y. Song, Directed strongly regular graphs from 1½-designs, Europ. J. Comb. 33 (2012) 1174-1177. MR2904983, Zbl 1242.05280
  215. A. Blokhuis & A. E. Brouwer, Spectral characterization of a graph on the flags of the eleven point biplane, Designs, Codes & Cryptography 65 (2012) 65-69. MR2943645, Zbl 1245.05092
  216. A. Blokhuis, A. E. Brouwer & W. H. Haemers, The graph with spectrum 141 240 (−4)10 (−6)9, Designs, Codes & Cryptography 65 (2012) 71-75. MR2943646, Zbl 1245.05085
  217. A. E. Brouwer & Ç. Güven, The generating rank of the space of short vectors in the Leech lattice mod 2, Designs, Codes & Cryptography 65 (2012) 107-113. MR2943650, Zbl 1245.05015
  218. A. E. Brouwer, A. M. Cohen, H. Cuypers, J. I. Hall & E. Postma, Lie algebras, 2-groups and cotriangular spaces, Adv. Geom. 12 (2012) 1-17. MR2911156, Zbl 1266.51006
  219. Andries E. Brouwer, Joshua E. Ducey & Peter Sin, The elementary divisors of the incidence matrix of skew lines in PG(3,q), Proc. Amer. Math. Soc. 140 (2012) 2561-2573. MR2910745, Zbl 1270.05024
  220. Andries E. Brouwer & Mihaela Popoviciu, Sylvester versus Gundelfinger, SIGMA 8 (2012) 075, 7pp. MR3007284, Zbl 1274.13009
  221. A. Blokhuis, A. E. Brouwer & T. Szőnyi, On the chromatic number of q-Kneser graphs, Designs, Codes and Cryptography 65 (2012) 187-197. MR2988179, Zbl 1266.51008
  222. A. E. Brouwer & L. Chastkofsky, (0,2)-graphs and root systems, Journal of Discrete Mathematics 2013, Article 140537, 4pp. Zbl 1295.05193
  223. A. E. Brouwer, C. F. Mills, W. H. Mills & A. Verbeek, Counting families of mutually intersecting sets, Electronic J. Combinatorics 20(2) (2013) #P8. MR3066347, Zbl 1267.05144
  224. A. Blokhuis, A. E. Brouwer & T. Szőnyi, Proof of a conjecture by Đoković on the Poincaré series of the invariants of a binary form, Indagationes Math. 24 (2013) 766-773. MR3124805 Zbl 1307.13008
  225. A. E. Brouwer & J. Huizinga, A family of 2-arc transitive pentagraphs with unbounded valency, Innov. Incidence Geom. 13 (2013) 141-147. MR3173017 Zbl 1293.05390
  226. A. Blokhuis, A. E. Brouwer & Ç. Güven, Cocliques in the Kneser graph on the point-hyperplane flags of a projective space, Combinatorica 34 (2014) 1-10. MR3213839 Zbl 1340.05202
  227. A. Blokhuis, A. E. Brouwer & T. Szőnyi, Maximal cocliques in the Kneser graph on point-plane flags in PG(4,q), Europ. J. Comb. 35 (2014) 95-104. MR3090489 Zbl 1292.05204
  228. A. Blokhuis, A. E. Brouwer & A. Sali, Note on the size of binary Armstrong codes, Designs, Codes and Cryptography 71 (2014) 1-4. MR3167044 Zbl 1323.94154
  229. A. E. Brouwer, R. Gow & J. Sheekey, Counting symmetric nilpotent matrices, Electr. J. Combin. 21 (2014) P2.4. MR3210638 Zbl 1297.15020
  230. T. Jenrich & A. E. Brouwer, A 64-dimensional counterexample to Borsuk's conjecture, Electr. J. Combin. 21 (2014) P4.29. MR3292266 Zbl 1311.51016
  231. L. Bedratyuk & A. E. Brouwer, Resolutions and Betti diagrams of algebras of SL2-invariants, C. R. Acad. Bulg. Sci. 67 (2014) 1477-1484. MR3309297 Zbl 1324.13006
  232. Andries E. Brouwer, Jan Draisma & Bart J. Frenk, Lossy Gossip and Composition of Metrics, Discrete & Computational Geometry 53 (2015) 890-913. MR3341584 Zbl 1317.15024
  233. A. Blokhuis, A. E. Brouwer, D. Jungnickel, V. Krčadinac, S. Rottey, L. Storme, T. Szőnyi & P. Vandendriessche, Blocking sets of the classical unital, Finite Fields Appl. 35 (2015) 1-15. MR3368796 Zbl 1327.05033
  234. Aida Abiad, Andries E. Brouwer, Willem H. Haemers, Godsil-McKay switching and Isomorphism, Electronic Journal of Linear Algebra 28 (2015) 4-11. MR3386383 Zbl 1327.05197
  235. A. E. Brouwer & M. A. Fiol, Distance-regular graphs where the distance-d graph has fewer distinct eigenvalues, Lin. Alg. Appl. 480 (2015) 115-126. MR3348516 Zbl 1314.05053
  236. A. E. Brouwer, J. Draisma & M. Popoviciu, The degrees of a system of parameters of the ring of invariants of a binary form, Transformation Groups 20 (2015) 953-967. on-line. MR3416434 Zbl 1332.13006
  237. A. E. Brouwer, S. M. Cioabă, W. H. Haemers & J. R. Vermette, Notes on simplicial rook graphs, J. Alg. Combin. 43 (2016) 783-799. on-line. MR3493479 Zbl 1339.05222
  238. A. E. Brouwer, Supalak Sumalroj & Chalermpong Worawannotai, The nonexistence of distance-regular graphs with intersection arrays {27,20,10;1,2,18} and {36,28,4;1,2,24}, Australasian J. Combin. 66 (2016) 330-332. MR3556137 Zbl 1375.05072
  239. A. Blokhuis & A. E. Brouwer, Cocliques in the Kneser graph on line-plane flags in PG(4,q), Combinatorica 37 (2017) 795-804. MR3737369 Zbl 1399.05120
  240. A. Blokhuis, A. E. Brouwer & B. M. M. de Weger, Binomial collisions and near collisions, Integers 17 (2017) #A64. MR3738074 Zbl 1414.11026
  241. A. E. Brouwer & J. D. Christensen, Counterexamples to Conjectures About Subset Takeaway and Counting Linear Extensions of a Boolean Lattice, Order 35 (2018) 275-281. MR3817838 Zbl 1469.91017
  242. A. E. Brouwer, S. M. Cioabă, F. Ihringer & M. McGinnis, The smallest eigenvalues of Hamming graphs, Johnson graphs and other distance-regular graphs with classical parameters, J. Combin. Th. (B) 133 (2018) 88-121. on-line. MR3856707 Zbl 1397.05098
  243. A. E. Brouwer & S. C. Polak, Uniqueness of codes using semidefinite programming, Designs, Codes and Cryptography 87 (2019) 1881-1895. on-line. MR3974807 Zbl 1409.94948
  244. A. E. Brouwer, Two-weight codes, Chapter 19, pp. 449-462, in Concise Encyclopedia of Coding Theory, W. C. Huffman, J.-L. Kim, P. Solé, eds., CRC Press, 2021. MR4598751 Zbl 1489.94133
  245. A. E. Brouwer & H. Van Maldeghem, Strongly Regular Graphs, Cambridge Univ. Press, Cambridge, etc., 2022. ISBN 978-1-316-51203-6. MR4350112 Zbl 1498.05001
  246. A. E. Brouwer & W. J. Martin, Triple intersection numbers for the Paley graphs, Finite Fields Appl. 80 (2022) 102010. MR4388984 Zbl 1493.05293
  247. A. E. Brouwer & A. A. Ivanov, Majorana Algebra for the Hoffman-Singleton Graph, Geometriae Dedicata 217, paper #4, (2023). MR4502642 Zbl 1526.20021
  248. A. E. Brouwer, The equivalence of two inequalities for quasisymmetric designs, Electr. J. Comb. 30 (2023) P1.22. MR4546612 Zbl 1515.05033
  249. Andries E. Brouwer, Ferdinand Ihringer & William M. Kantor, Strongly regular graphs satisfying the 4-vertex condition, Combinatorica 43 (2023) 257-276. MR4627309 Zbl 7745875
  250. Andries E. Brouwer, Jan Draisma & Çiçek Güven, The unique coclique extension property for apartments of buildings, Inn. Incid. Geom. 20 (2023) 209-221. MR4641390 Zbl 1523.05033
  251. A. E. Brouwer, D. Crnković & A. Švob, A construction of directed strongly regular graphs with parameters (63,11,8,1,2), Discr. Math. 347 (2024) 114146. arXiv.
  252. A. E. Brouwer, Some locally Kneser graphs, Electronic J. Combinatorics 31 (2024) P4.19. arXiv.

Valid HTML 4.01 Transitional